
JFT/API

Programming Manual

Version 4.0.0

To contact the helpdesk nearest to you visit our website
www.list−group.com

http:\\www.list-group.com

Table of Contents
JFT\Api ...1

 JFT/Api Introduction ...3

FastTrack Overview..5
System Architecture Overview...5
Access points..5
JFT/Api Access Point...6

Data Distribution..7
Publish...7
Subscribe...7
Queries..7
Transactions..8
Connections and Contexts...8

JFT/Api Details..9
Asynchronous Communication Model...9
LifeCycle...9
Data Model..9
Other Peculiarities...9
JFT/Api Entry Point..9

Package it.list.jft...11
Package it.list.jft Description..12
 Package it.list.jft Data Model...12

Hierarchy For Package it.list.jft ...15
Interface Hierarchy...15
Interface EntityClass...15
Interface Entity..18
Interface EntityField...21
Interface EntityKey...25
Interface LifeCycle...26
Interface CommunicationLifeCycle..31
Interface ActivityLifeCycle..34
Interface EntityClassQuery...36
Interface Filter...38
Interface EntityFilter...44
Interface Query...47
Interface Subscription...53
Interface Transaction..60
Interface Connection...67
Interface MulticastConnection..72
Interface Context...74
Interface JFT...83
Interface Mask..96
Interface Param...99
Interface ConnectionParam...101
Interface EntityClassQueryParam...121

i

Table of Contents
Hierarchy For Package it.list.jft

Interface FilterParam..122
Interface MulticastConnectionParam..125
Interface QueryParam...127
Interface SubscriptionParam...129
Interface TransactionParam..139
Interface TimeStamp...146
Interface TransactionID..147
Interface Tracer...150

Package it.list.jft.event...151
Package it.list.jft.event Description..152
 Package it.list.jft.event Data Model...152

Hierarchy For Package it.list.jft.event...155
Interface Hierarchy...155
Interface Event..155
Interface ConnectionEvent..157
Interface ConnectionCloseEvent..158
Interface ConnectionLostEvent..159
Interface ConnectionOpenEvent...160
Interface EntityClassQueryEvent..166
Interface FilterEvent...167
Interface FilterCreateEvent...168
Interface FilterDestroyEvent...170
Interface FilterSetEvent..171
Interface MulticastConnectionEvent..173
Interface QueryEvent..174
Interface QueryCreateEvent..175
Interface QueryDestroyEvent...178
Interface QueryNotifyEvent..178
Interface QueryRowsEvent...182
Interface SubscriptionEvent..183
Interface SubscriptionIdleEvent..184
Interface SubscriptionNotifyEvent...185
Interface SubscriptionStartEvent..189
Interface SubscriptionStopEvent..191
Interface TransactionEvent...192
Interface TransactionQueryEvent...195
Interface TransactionSendEvent...196
Interface Listener..197
Interface ConnectionListener..197
Interface EntityClassQueryListener..199
Interface FilterListener..200
Interface MulticastConnectionListener...202
Interface QueryListener..202
Interface SubscriptionListener..205
Interface TransactionListener...207

ii

Table of Contents
 JFT/Api Application Examples..211

Example 1...212
Example 2...217
Example 3...235

To Contact Us..239

iii

iv

JFT\Api
This manual describes JFT/API, the Java Application Program Interface developed by LIST within FastTrack to
access electronic markets and other services handled by FastTrack.
See: Description

Packages

Package Description

it.list.jft Provides interfaces for dealing with different FastTrack objects.

it.list.jft.event Provides interfaces for dealing with different types of events and listeners.

This manual describes JFT/API, the Java Application Program Interface developed by LIST within FastTrack to
access electronic markets and other services handled by FastTrack.

To start use this library read the JFT/Api Introduction or watch the data models (Package it.list.jft Data Model and
Package it.list.jft.event Data Model) or jump to JFT or just watch a few Java example programs.

ListGroup & FastTrack Contacts

Requests for clarifications, comments and suggestions to improve the quality of the product are welcome.
Please contact us:

LIST SpA
Via Pietrasantina, 123
56122 PISA � ITALY

Or contact us by email:

Marketing: infodesk@list−group.com
General Support: helpdesk@list−group.com
JFT/API Programming Support:ftapi@list−group.com

Or visit us at www.list−group.com

Related Documentation

FTAPI.pdf − FT/API Programmer's Guide − V 3.6.2
 The traditional C interface to FastTrack.
FastTrade White Paper
 Introduction to FastTrade technology.

See Also:
JFT/Api Introduction, JFT, JFT Application Examples,
JFT Exceptions, JFT Implementation Threads, JFT Synchronization

Submit a bug or feature to FT\API Programming Support

JFT\Api 1

mailto:infodesk@list-group.com
mailto:helpdesk@list-group.com
mailto:ftapi@list-group.com
http://www.list-group.com
mailto:ftapi@list-group.com

JFT\Api

2 JFT\Api

JFT/Api Introduction
This manual describes version 4.0.0 of JFT/API, the Java Application Program Interface developed by LIST within
FastTrack to access electronic markets and other services handled by FastTrack.

Data structure and functions of JFT/API interface are described, along with the main concepts regarding access to the
FastTrack server: connections, data subscriptions, transactions, queries, etc...

The first chapter FastTrack Overview introduces the main basic concepts of FastTrack with a short overview of
system architecture.

The second chapter Data Distribution explains how data are distributed, searched and retrieved inside FastTrack.

Chapter three JFT/Api Details describes the main peculiarities of the Java Access Point to FastTrack: lifecycle,
communication model, exception handling, threads synchronization, etc...

Following chapters contain the effective and detailed descriptions of the Api subdivided in two different packages:
it.list.jft and it.list.jft.event,

Finally, after all details on specific JFT/Api functions, a few examples of Java application are given in order to exploit
almost all major capabilities offered by JFT/Api and to be possibly fruitfully studied and used as starting point for
effectives Java programs that links to a true FastTrack server.

 JFT/Api Introduction 3

 JFT/Api Introduction

4 JFT/Api Introduction

FastTrack Overview
This chapter explains the basic concepts of FastTrack that are fundamental in developing Java applications that access
FastTrack services using this JFT/Api.

System Architecture Overview

FastTrack's architecture is modular and distributed.

There are three different architectural levels for the various components, depending on the service they implement:

Core•
Basic•
Enterprise•

The core level is the heart of the system, the foundation of FastTrack's modular architecture.

The set of FastTrack modules managing communication with the external world makes up the basic level. These are
organized into two categories: Adapters, through which FastTrack can access other systems or electronic markets,
and Access points, which give access to FastTrack from the outside. Finally, the enterprise level hosts the functional
applications in FastTrack (Engine level).

FastTrack's components interact both in a synchronous and asynchronous way − the latter uses a publish−subscribe
paradigm.

FastTrack is a distributed system. The computing process is subdivided into several steps. It is not performed by one
individual component, but by a series of elements (Application Servers or Services) each designed to carry out its
particular part of the process.

Access points

The Access Point Level is the only interface FastTrack offers to use its services from the outside.

FastTrack Overview 5

Queries made to the FastTrack platform and answers to these queries both go through the Access Point Level.

The Access Point Level:

provides access to external applications which use communication protocols which are very different from
one another, thus guaranteeing their complete access to FastTrack's functionalities;

•

manages connections coming from external applications;•
manages in a centralized way the sessions that have been opened on FastTrack, by users connected via
proprietary applications, or the FastTrack Console, or a Web browser, independently of the communication
protocol;

•

provides all functionalities needed by the external application to utilize the services offered by internal
engines, hence:

transactions to send requests;♦
real−time data distribution mechanisms (for example push on HTML);♦
mechanisms to perform point to point requests (e.g. Query).♦

•

JFT/Api Access Point

This JFT/Api library is just a FastTrack Access Point that offers a Java interface to be used in order to connect
FastTrack servers via TCP/IP connections.

Using this library it is possibile to construct Java applications and/or applets that may communicate with one or more
FastTrack servers and/or services.

Obviously the effective access to these services is managed/controlled/verified in relation to various credentials (user
names, passwords, authorization keys, etc...) that an external application must presents in order to be properly
authorized to enter in the system.

JFT/Api Access Point

6 JFT/Api Access Point

Data Distribution
Data are distributed through a publish/subscribe protocol, in which producers and consumers exchange messages to
access the data. There are many data structure exchanged within FastTrack. Each data structure is called EntityClass
and it is structured in many fields of many different types (numbers, strings, etc...). Each set of values that corresponds
to these fields is an instance of the EntityClass. This instance id called Entity. Applications may modify or access an
entire Entity (all the fields of an instance of an EntityClass) or a subset of these fields defined using a mask.

From now on we call:

client any Java application that use JFT/Api,•
server any FastTrack service that is connected to the client.•

As we will see below, normally a client is a subscriber, and the server is a producer, of a set of data which are
exchanged between them.

Publish

The producer (tipically a fastTrack service) notifies the availability of new data with a publish message. These
messages are sent to all connected components (other Faststrack services and/or JFT applications) that expressed
interest on these type of data.

Example:
a FastTrack order−manager publishes all records that describes new received or changed orders.

Only certain EntityClasses of a FastTrack server may be published and then subscribed. The documentation of each
FastTrack server clearly says which EntityClasses can be published/subscribed.

Subscribe

A request for data by consumers is done by a subscribe message. This message typically says in which EntityClass the
consumer is interested.

Example:
a customer subscribes to the orders handled by FastTrack.

Subscriptions in JFT/Api are modelled by Subscription. Among other things within subscriptions it's possible to have:

Incremental Subscriptions, in which the server is only required to send updated contents of an EntityClass,
rather than sending all its records;

•

Partial Subscriptions, in which the server is requested to send only those entities in a EntityClass that satisfy
certain constraints;

•

an optional Filter to restrict (at the server level) the set of entities that will be notified;•
an optional Mask to restrict (at the server level) the set of fields of entities that will be notified.•

See Subscription Usage to see all specific subscription−related modalities.

Queries

In addition to the publish/subscribe mechanism a client has the possibility to obtain from the server a specific set of

Data Distribution 7

entities. This is done with the Query metaphor that mimics the homonymous facility of DBMS. Normally each type of
query (identified by a specific number) has an argument that specify the particular request.

Example:
A client queries for all orders sent by a specific operator.

Only certain queries (each identified by a unique number) are permitted with a FastTrack server. The documentation
of each FastTrack server clearly lists which queries (i.e. numbers) are permitted and with which arguments.

Transactions

The client may request a server to make some actions that may result in the update of one or more entities. The server
evaluates the request and accepts or refuses it. Accepting the modification often implies application specific check
actions by the server with the aim of controlling the access rights and action consistency while interpreting the
semantics of the request arrived from the client. This is modeled in JFT/Api with the Transaction metaphor.

Example:
the client asks the server to issue an order on a specific product.

This operation may take a long period to be completed by the server and so the client have to monitor it until a good
or bad (commited vs aborted) final result. This monitoring must be always done by the client, even after a
client−restart on previous initiated (past) transactions. Only when the client see the final commited result it may
assume that the transaction was succesfully.

See Transaction Usage to see all specific attributes of a transaction and how to monitor past transactions.

Connections and Contexts

All the above described capabilities are communicated between the client Java application (that use these JFT/Api)
and the FastTrack server (a specific service of a FastTrack server) using a TCP/IP channel modelled with a
Connection. The main attributes of such Connections are the TCP/IP host and port on which a named service reside.

Example:
an order−manager service may reside on port 1234 of host myFTserver.myDomain.com (or
something like 194.91.195.33) and beeing named OrderManager

See Connection Usage to see all specific attributes that define a connection.

In addition the Context. metaphor has been introduced in order to group together connections (and corresponding
subscriptions, transactions, queries, etc..) that refer to the same set of related FastTrack services.

Transactions

8 Transactions

JFT/Api Details
The JFT/Api library may be used starting with Sun JDK 1.7.

Asynchronous Communication Model

The implementation of JFT/API functionalities is based on an asynchronous communication model. A functionality
(such as connection opening or a subscription for a set of data) is requested to the library via a method invocation.
This request specifies (among other parameters) some notification methods, defined by the user in some Listener,
which will be called by the library when data arrive or when other events occur.

See Listener interface for specific details.

LifeCycle

Many objects exposed by the JFT/Api library share the life cycle metaphor: once they are created, their life goes
through well defined steps depending on their internal status.

See the LifeCycle interface and its related sub−interfaces to understand how this behaviour is controlled and
regulated.

Data Model

The UML data models of the two packages of this JFT/Api library are available.

See it.list.jft Data Model and it.list.jft.event Data Model to familiarize with the hierarchy and
relationship of the various interfaces.

Other Peculiarities

Some other details of the JFT/Api implementation are referenced here in order to use at the best the library:

JFT Exceptions describes when and how the library throw exceptions,•
JFT Implementation Threads describes how the library use its own threads and how to successfully exit from
a Java client,

•

JFT Synchronization describes the synchronization needs and requirements that must be obeyed in the
execution of some specific Listener methods.

•

JFT/Api Entry Point

Last but not least:

Where is the first initial entry point to use this library?

It's available in the singleton that implements the JFT interface. Using that singleton, referenced by the THIS constant,
every programmer may starts to use the library accessing all its functionalities.

JavaScript is disabled on your browser.

JFT/Api Details 9

http://www.omg.org/gettingstarted/what_is_uml.htm

JFT/Api Details

10 JFT/Api Details

Package it.list.jft
Provides interfaces for dealing with different FastTrack objects.
See: Description

Interface Summary

Interface Description

ActivityLifeCycle Super−interface common to all lifecycles objects of a given Connection.

CommunicationLifeCycle Super−interface common to all lifecycles objects of a given Context.

Connection Logical bidirectional channel with a server.

ConnectionParam Connection parameter container.

Context Container and factory of inter−related communication objects.

Entity Interface that describes a specific instance of a EntityClass.

EntityClass Interface that describes a specific market/service class.

EntityClassQuery

EntityClassQueryParam

EntityField

EntityFilter
Usually, fasttrack serverices implements a default filter to restrict the set of
values notified by a Subscription, based on full or partial key values.

EntityKey An actual (partial or full) key value of a key of an EntityClass.

Filter A manner to restrict the set of values notified by a Subscription.

FilterParam Filter parameter container.

JFT Main basic library interface to use within JFT/API.

LifeCycle Super−interface common to all lifecycles.

Mask A set of fields of a EntityClass.

MulticastConnection

MulticastConnectionParam

Param
Super−interface common to all parameter container of
CommunicationLifeCycle objects.

Query
A client's request to a server to obtain a set of entities (or rows) from its own
Data Base.

QueryParam Query parameter container.

Subscription
An arrangement with the server for receiving a continuing set of interesting
entities of the same EntityClass.

SubscriptionParam Subscription parameter container.

TimeStamp Interface that allows to represent a temporal indicator.

Tracer Interface to be implemented in order to handle the library trace.

Transaction

•

Package it.list.jft 11

A client's request to the server to add, remove or modify an entity in its own
Data Base.

TransactionID Interface that allows to identify a Transaction.

TransactionParam Transaction parameter container.

Package it.list.jft Description

Provides interfaces for dealing with different FastTrack objects.

Implementation of Tracer must be provided by the JFT application.
Implementation for all other interfaces is already provided by the JFT library.

See the hierarchy of this it.list.jft package and the JFT documentation for details.

Package it.list.jft Data Model

Package it.list.jft Description

12 Package it.list.jft Description

The above figure is the UML representation of it.list.jft data model.
In blue all interfaces that implement LifeCycle objects.

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.

Package it.list.jft Description

Package it.list.jft Description 13

mailto:ftapi@list-group.com

Package it.list.jft Description

14 Package it.list.jft Description

Hierarchy For Package it.list.jft
Package Hierarchies:

All Packages•

Interface Hierarchy

Cloneable
Entity (also extends EntityClass, Serializable)♦

•

EntityClass
Entity (also extends Cloneable, Serializable)♦

•

EntityField•
EntityKey•
LifeCycle

CommunicationLifeCycle
ActivityLifeCycle

EntityClassQuery⋅
Filter

EntityFilter•
⋅

Query⋅
Subscription⋅
Transaction⋅

◊

Connection◊
MulticastConnection◊

♦

Context♦
JFT♦

•

Mask•
Param

ConnectionParam♦
EntityClassQueryParam♦
FilterParam♦
MulticastConnectionParam♦
QueryParam♦
SubscriptionParam♦
TransactionParam♦

•

Serializable
Entity (also extends Cloneable, EntityClass)♦
TimeStamp♦
TransactionID♦

•

Tracer•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityClass

All Known Subinterfaces:
Entity

•

Hierarchy For Package it.list.jft 15

mailto:ftapi@list-group.com

public interface EntityClass

Interface that describes a specific market/service class.

All market/service EntityClasses share a set of common methods to:

retrieve the class name,♦
retrieve the class ID,♦
check if if a given KeyID is a valid key index,♦
retrieve the number of segments of a given KeyID.♦

In addition all market/service objects, that implement the Entity sub−interface, share, as well, these
methods.

If necessary explicitly objects that implement this interface are created and returned by the
JFT.getEntityClass() method.

Field Summary

Fields

Modifier and Type Field and Description

static int TYPE_ENTITY

static int TYPE_ENUM

♦

Method Summary

Methods

Modifier and
Type

Method and Description

int
getEntityClassID()
Returns the ID that identifies the EntityClass.

String
getEntityClassName()
Returns the name that identifies the EntityClass.

EntityField[] getEntityFields()

int
getNumSegments(int keyID)
Returns the number of segments of the given KeyID of this EntityClass.

int getType()

boolean
isKey(int keyID)
Check if a given keyID is an index of a key for this EntityClass.

boolean
isKey(int keyID, boolean checkPrimary)
Check if a given keyID is an index of a primary or duplicate key for this
EntityClass.

♦

•

Interface EntityClass

16 Interface EntityClass

Entity makeEntity()

Field Detail

TYPE_ENTITY

static final int TYPE_ENTITY

See Also:
Constant Field Values

◊

TYPE_ENUM

static final int TYPE_ENUM

See Also:
Constant Field Values

◊

♦

Method Detail

getEntityClassName

String getEntityClassName()

Returns the name that identifies the EntityClass.

Returns:
the name that identifies the EntityClass.
null and empty strings are never returned.

◊

getEntityClassID

int getEntityClassID()

Returns the ID that identifies the EntityClass.

Returns:
the ID that identifies the EntityClass.
zero or negative values are never returned.

◊

isKey

boolean isKey(int keyID)

Check if a given keyID is an index of a key for this EntityClass.

Parameters:
keyID − index to be checked

Returns:
true if keyID is an index of a key for this EntityClass,
falseotherwise.

◊

♦

•

Interface EntityClass

Interface EntityClass 17

isKey

boolean isKey(int keyID,
 boolean checkPrimary)

Check if a given keyID is an index of a primary or duplicate key for this EntityClass.

Parameters:
keyID − index to be checked
checkPrimary − check for primary or duplicate key index

Returns:
true if keyID is an index of a key for this EntityClass and it refers a primary or
duplicate key as specified by checkPrimary parameter,
falseotherwise.

◊

getNumSegments

int getNumSegments(int keyID)

Returns the number of segments of the given KeyID of this EntityClass.

Parameters:
keyID − the index of a key of this class.

Returns:
the number of segments of the given KeyID of this EntityClass.
0 is returned if the KeyID parameter is not a valid index of a key of this class.

◊

getType

int getType()

◊

getEntityFields

EntityField[] getEntityFields()

◊

makeEntity

Entity makeEntity()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Entity

All Superinterfaces:
Cloneable, EntityClass, Serializable

public interface Entity
extends EntityClass, Cloneable, Serializable

Interface that describes a specific instance of a EntityClass.

All entities objects share two common methods to retrieve full and partial EntityKeys, in additions to
inherithed methods from EntityClass.

•

Interface EntityClass

18 Interface EntityClass

mailto:ftapi@list-group.com

All other specific fields of each entity are available as specific fields of the correspinding Java object that
implements this interface.

Field Summary

Fields inherited from interface EntityClass

TYPE_ENTITY, TYPE_ENUM

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Object
clone()
Implement Cloneable interface.

Object
getField(String fieldName)
Returns a field value of this Entity.

EntityKey
getFullEntityKey(int keyID)
Returns a given full EntityKey of this Entity.

EntityKey
getPartialEntityKey(int keyID, int numSegments)
Returns a given partial EntityKey of this Entity.

void
setField(String fieldName, Object value)
Set a field value of this Entity.

Methods inherited from interface EntityClass

getEntityClassID, getEntityClassName, getEntityFields,
getNumSegments, getType, isKey, isKey, makeEntity

◊

♦

•

Method Detail

getFullEntityKey

EntityKey getFullEntityKey(int keyID)

Returns a given full EntityKey of this Entity.

Please note:
 getFullEntityKey(keyID) == getPartialEntityKey(keyID,
getNumSegments(keyID))

Parameters:
keyID − the index of a key of this class.

Returns:

◊

♦ •

Interface Entity

Interface Entity 19

a given full EntityKey of this Entity.
null is returned when the given keyID does not refer to a valid key for the
EntityClass of this Entity.

getPartialEntityKey

EntityKey getPartialEntityKey(int keyID,
 int numSegments)

Returns a given partial EntityKey of this Entity.

Parameters:
keyID − the index of a key of this class.
numSegments − number of initial segments that must be present in the partial key.

Returns:
a given partial EntityKey of this Entity.
null is returned when the given keyID does not refer to a valid key for the
EntityClass of this Entity,
or when the given numSegments parameter is <=0 or > getNumSegments(keyID).

◊

getField

Object getField(String fieldName)
 throws NullPointerException,
 IllegalArgumentException

Returns a field value of this Entity.

Please note:
− to get array value at index i use "fieldname[i]"
− for nested entity field use "." as separator

For primitive value, it returns the Object corresponding to it (e.g. int as returned as
Integer).

Parameters:
fieldName − the name of the field.

Returns:
the Object value of the field.
null is returned when the given fieldName does not refer to a valid field for the
EntityClass of this Entity.

Throws:
IllegalArgumentException − if the field name is not valid.
NullPointerException

◊

setField

void setField(String fieldName,
 Object value)
 throws NullPointerException,
 IllegalArgumentException,
 ClassCastException

Set a field value of this Entity.

Parameters:
fieldName − the name of the field.

◊

Interface Entity

20 Interface Entity

value − the Object value of the field.
Throws:

IllegalArgumentException − if the field name is not valid.
ClassCastException − if the Object value type is not valid.
NullPointerException

See Also:
getField(java.lang.String)

clone

Object clone()
 throws CloneNotSupportedException

Implement Cloneable interface.
Throws:

CloneNotSupportedException

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityField

public interface EntityField

•

Field Summary

Fields

Modifier and Type Field and Description

static int TYPE_BOOLEAN

static int TYPE_BYTE

static int TYPE_CHAR

static int TYPE_DATE

static int TYPE_DOUBLE

static int TYPE_DTIME

static int TYPE_ENTITY_CLASS

static int TYPE_FLOAT

static int TYPE_INT

static int TYPE_LDATE

static int TYPE_LONG

static int TYPE_LTIME

static int TYPE_MTIME

♦ •

Interface Entity

Interface Entity 21

mailto:ftapi@list-group.com

static int TYPE_SHORT

static int TYPE_STRING

static int TYPE_TDATE

static int TYPE_TIME

static int TYPE_UCHAR

static int TYPE_UINT

static int TYPE_ULONG

static int TYPE_USHORT

Method Summary

Methods

Modifier and Type Method and Description

EntityClass getEntityClass()

String getName()

int getNumElements()

int getType()

♦

Field Detail

TYPE_ENTITY_CLASS

static final int TYPE_ENTITY_CLASS

See Also:
Constant Field Values

◊

TYPE_INT

static final int TYPE_INT

See Also:
Constant Field Values

◊

TYPE_UINT

static final int TYPE_UINT

See Also:
Constant Field Values

◊

TYPE_SHORT

static final int TYPE_SHORT

See Also:
Constant Field Values

◊

♦ •

Interface EntityField

22 Interface EntityField

TYPE_USHORT

static final int TYPE_USHORT

See Also:
Constant Field Values

◊

TYPE_LONG

static final int TYPE_LONG

See Also:
Constant Field Values

◊

TYPE_ULONG

static final int TYPE_ULONG

See Also:
Constant Field Values

◊

TYPE_FLOAT

static final int TYPE_FLOAT

See Also:
Constant Field Values

◊

TYPE_DOUBLE

static final int TYPE_DOUBLE

See Also:
Constant Field Values

◊

TYPE_BYTE

static final int TYPE_BYTE

See Also:
Constant Field Values

◊

TYPE_CHAR

static final int TYPE_CHAR

See Also:
Constant Field Values

◊

TYPE_UCHAR

static final int TYPE_UCHAR

See Also:
Constant Field Values

◊

TYPE_STRING

static final int TYPE_STRING

See Also:
Constant Field Values

◊

Interface EntityField

Interface EntityField 23

TYPE_DATE

static final int TYPE_DATE

See Also:
Constant Field Values

◊

TYPE_TIME

static final int TYPE_TIME

See Also:
Constant Field Values

◊

TYPE_TDATE

static final int TYPE_TDATE

See Also:
Constant Field Values

◊

TYPE_LTIME

static final int TYPE_LTIME

See Also:
Constant Field Values

◊

TYPE_LDATE

static final int TYPE_LDATE

See Also:
Constant Field Values

◊

TYPE_BOOLEAN

static final int TYPE_BOOLEAN

See Also:
Constant Field Values

◊

TYPE_MTIME

static final int TYPE_MTIME

See Also:
Constant Field Values

◊

TYPE_DTIME

static final int TYPE_DTIME

See Also:
Constant Field Values

◊

Method Detail
♦

Interface EntityField

24 Interface EntityField

getType

int getType()

◊

getEntityClass

EntityClass getEntityClass()

◊

getName

String getName()

◊

getNumElements

int getNumElements()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityKey

public interface EntityKey

An actual (partial or full) key value of a key of an EntityClass.

An EntityKey is an ordered set of N values corresponding to the ordered set of K (K >= N) segments that
describe a key of an EntityClass.

If N == K then the EntityKey is full, otherwise (0 < N < K) it's partial.

The type of each segment is a Java primitive type (boolean, byte, char, short, int, long,
float, double) or it is a String.

An Entity Key may be used in subscriptions (SubscriptionParam.setEntityKey() and
Subscription.refreshEntity()) or it may be retrieved from entities
(Entity.getFullEntityKey() and Entity.getPartialEntityKey()) and then re−used.

•

Method Summary

Methods

Modifier and Type Method and Description

int
getEntityClassID()
Returns the ID of the EntityClass related to this EntityKey.

int
getKeyID()
Returns the key ID of this key.

int
getNumSegments()
Returns N (N>0), the numbers of set segments of this EntityKey.

♦ •

Interface EntityField

Interface EntityField 25

mailto:ftapi@list-group.com

Method Detail

getKeyID

int getKeyID()

Returns the key ID of this key.

The returned value is the same keyID used as parameter of
Entity.getFullEntityKey() or Entity.getPartialEntityKey()
invocations that created this EntityKey.

Returns:
the key ID of this key.

◊

getEntityClassID

int getEntityClassID()

Returns the ID of the EntityClass related to this EntityKey.

The returned value is the EntityClassID of the Entity that created (via
Entity.getFullEntityKey() or Entity.getPartialEntityKey() this
EntityKey.

Returns:
the ID of the EntityClass related to this EntityKey.

◊

getNumSegments

int getNumSegments()

Returns N (N>0), the numbers of set segments of this EntityKey.

The returned value is the number of segments of the EntityClass for a full EntityKey, or it is
the same numSegments used as parameter of Entity.getPartialEntityKey() for
a partial EntityKey.

Returns:
N (N>0), the numbers of set segments of this EntityKey.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface LifeCycle

All Known Subinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, Connection, Context, EntityClassQuery, EntityFilter,
Filter, JFT, MulticastConnection, Query, Subscription, Transaction

public interface LifeCycle

•

Interface EntityKey

26 Interface EntityKey

mailto:ftapi@list-group.com

Super−interface common to all lifecycles.

LifeCycle Usage

All JFT LifeCycle objects share:

an initial STATUS_INIT status where every object goes immediately after its creation,♦
a final STATUS_RELEASED status where every object goes when the release() method is
explicitly invoked;

♦

a getStatus() method to retrieve the current object status;♦
a release() method to abruptly and recursively move an object in the final STATUS_RELEASED
status.

♦

three result−codes (RESULT_OK, RESULT_INVALID_STATUS and RESULT_GENERIC_ERROR)
that may returned by many JFT methods.

♦

The three directs sub−interfaces of LifeCycle (JFT, Context and CommunicationLifeCycle) add
many other capabilities to this interface.

Lifecycle

See Also:
JFT LifeCycle, Context LifeCycle, Connection LifeCycle, Filter LifeCycle, Query LifeCycle,
Subscription LifeCycle, Transaction LifeCycle

Field Summary

Fields

♦ •

Interface LifeCycle

Interface LifeCycle 27

Modifier and
Type

Field and Description

static int
RESULT_GENERIC_ERROR
Generic failure−code returned when a more specific error is not available.

static int
RESULT_INVALID_STATUS
Failure−code returned when an operation is requested whitin a not correct status.

static int
RESULT_OK
Positive answer returned when the operation completed successfully.

static int
STATUS_INIT
Lifecycle status: initial status for every object that implements the LifeCycle
interface.

static int
STATUS_RELEASED
Lifecycle status: final status for every object that implements the LifeCycle
interface.

Method Summary

Methods

Modifier and Type Method and Description

Enumeration
enumChilds()
Returns an enumeration of all non−STATUS_RELEASED childs of
this LifeCycle.

int
getStatus()
Returns the current lifecycle status of this object.

void
release()
Abruptly and recursively move an object in the final
STATUS_RELEASED status.

♦

Field Detail

RESULT_OK

static final int RESULT_OK

Positive answer returned when the operation completed successfully.
See Also:

Constant Field Values

◊

RESULT_GENERIC_ERROR

static final int RESULT_GENERIC_ERROR

Generic failure−code returned when a more specific error is not available.
See Also:

Constant Field Values

◊

♦ •

Interface LifeCycle

28 Interface LifeCycle

RESULT_INVALID_STATUS

static final int RESULT_INVALID_STATUS

Failure−code returned when an operation is requested whitin a not correct status.
See Also:

Constant Field Values

◊

STATUS_INIT

static final int STATUS_INIT

Lifecycle status: initial status for every object that implements the LifeCycle interface.
This value may be returned by getStatus().

Status Entry:
object creation STATUS_INIT.

Status Activities:
getStatus() and other specific activities allowed in this status for the specific
subinterfaces of LifeCycle.

Status Exit:
any status release() STATUS_RELEASED.

See Also:
Constant Field Values

◊

STATUS_RELEASED

static final int STATUS_RELEASED

Lifecycle status: final status for every object that implements the LifeCycle interface.
This value may be returned by getStatus().

Status Entry:
any status release() STATUS_RELEASED.

Status Activities:
getStatus() or other activities that does not depend from the status of the object
(e.g. JFT.getLibraryVersion() in JFT,
CommunicationLifeCycle.getContext() in CommunicationLifeCycle,
etc...).

Status Exit:
none: an object in this status will never change status.

See Also:
Constant Field Values

◊

Method Detail

release

void release()

Abruptly and recursively move an object in the final STATUS_RELEASED status.

This object, and all others objects that depends from this object (see later), are abruptly
moved on the final STATUS_RELEASED status. For the objects in this final status:

◊

♦

Interface LifeCycle

Interface LifeCycle 29

very few activities are availables (see STATUS_RELEASED description),⋅
any automatic Listener method invocation is never made.⋅

The recursive moving of an object in the final status obeys to the following tree structure:
JFT

Context
Connection

Filter◊
Subscription◊
Query◊
Transaction◊

♦
•

⋅

E.g. if this method is called on a connection then this connection and all its childs (filters,
subscriptions, queries and transactions) are moved on the final STATUS_RELEASED status.
Please note: JFT, all contexts, all other connections and all other childs of others connections
are unaffected by this operation in this example.

This method may be invoked at any time, even if this object is already in the final
STATUS_RELEASED status.
getStatus

int getStatus()

Returns the current lifecycle status of this object.

Each object has a status that may be one of the two commons LifeCycle status
(STATUS_INIT or STATUS_RELEASED) or a specific status that is described by a constant
STATUS_ described in one of the subinterface of LifeCycle.

Returns:
the current lifecycle status of this object.

◊

enumChilds

Enumeration enumChilds()

Returns an enumeration of all non−STATUS_RELEASED childs of this LifeCycle.

The hierarchy is depicted in the release() description.

This method returns only the first level childs of a given LifeCycle: e.g. for a Context it
returns only the Connections of this Context and not their ActivityLifeCycle childs.

This method may be invoked at any time, even if this object is in the final
STATUS_RELEASED status.

Returns:
an enumeration of all non−STATUS_RELEASED childs of this LifeCycle.
null is never returned.

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface LifeCycle

30 Interface LifeCycle

mailto:ftapi@list-group.com

Interface CommunicationLifeCycle

All Superinterfaces:
LifeCycle

All Known Subinterfaces:
ActivityLifeCycle, Connection, EntityClassQuery, EntityFilter, Filter, MulticastConnection, Query,
Subscription, Transaction

public interface CommunicationLifeCycle
extends LifeCycle

Super−interface common to all lifecycles objects of a given Context.

The 5 kind of objects (Connection, Filter, Query, Subscription and Transaction) that
implement this interface:

are created by makeSomething methods of their Context,♦
shares 3 common methods to get their associated Context, Listener and parameter.♦

JFT Implementation Threads

The underlying implementation of JFT use some implementation threads to:

read and write data from/to the server, and♦
call the Listener methods in the Java application.♦

These JFT implementation threads are not daemons threads, so the main Java thread may safely terminate
and the application continue to run until there are some JFT implementation threads running (see the section
12.8 of the Java Language Specification).

There is at least one JFT implementation thread:

when there are some Listener methods eligible to be called (e.g. a
Connection.STATUS_CONNECTING, or a Subscription.STATUS_STARTED, or a
Query.STATUS_DESTROYING, or ...) because there are some i/o data pending.

♦

There are no JFT implementation threads when all CommunicationLifeCycle objects are
LifeCycle.STATUS_RELEASED so a sure manner to terminate a Java application that use JFT is:

JFT.THIS.release()

JFT Synchronization

The JFT library guarantees that any implementation thread never holds any monitor lock on any objects that
implements any JFT interfaces.
JFT library internally never synchronize on JFT, EntityClasses, Entities, Connections, Subscriptions, etc...
objects.

This is always guaranteed, even inside the Listener methods called inside the JFT implementation
threads. So the programmer that uses the JFT library is free to synchronize on these objects for his needs.

But Warning:

•

Interface CommunicationLifeCycle

Interface CommunicationLifeCycle 31

http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44857
http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44857

Each Listener method must execute its task within the shortest time possible.
Do not synchronize anything or make time−intensive computation inside the Listener
methods because this may deadlock the JFT library.
If you have an impelling necessity to do so, you have to start another thread to accomplish
your needs.
So, please, do not download a file from FTP and/or do not compute the first one million digits
of PI inside a Listener method!

In addition there is no need to synchronize any activity between the programmer and the JFT library. All
needed synchronizations are made by JFT library on internal hidden objects, not accessible to the JFT
programmer that use this JFT API.
E.g. for internal needs the JFT implementation may synchronize their implementation threads on the
subscriptions or on the connections: this is made synchronizing on the private hidden fields lockObject that
are present in the JFT implementation of Subscription and Connection.

The primitive data returned by the implementation to the JFT application (e.g. the status returned by
LifeCycle.getStatus() method) are internally implemented as primitive volatile data, so they are
almost always in synch between the implementation and the application.

So the JFT application does not need to protect itself with something like:

 if (mySubscription.getStatus() == LyfeCycle.STATUS_INIT)
 mySubscription.start();

because, even if the status returned in mySubscription.getStatus() is
LyfeCycle.STATUS_INIT, when the application invoke the mySubscription.start() method,
the status may already be changed to STATUS_RELEASED because another thread, in the meantime, has
released the Connection associated to mySubscription.

The JFT library implementation instead surely synchronize the access to the various objects and status with
something like:

 public int start() {
 synchronized(lockObject) {
 if (status == STATUS_INIT) {
 ...
 status = STATUS_STARTING;
 }
 }
 }

E.g. this prevents any status changes by others threads inside the start() code.

In brief:
The JFT application does not care of JFT implementation threads.⋅
The JFT application does not need to synchronize with these JFT implementation threads.⋅
The JFT application is free to synchronize on any objects for its own needs.

but

⋅

WARNING: The JFT application must not synchronize inside a Listener method.⋅
WARNING: The JFT application must not made time−intensive computation inside a
Listener method.

⋅

Interface CommunicationLifeCycle

32 Interface CommunicationLifeCycle

See Also:
LifeCycle

Field Summary

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

♦

Method Summary

Methods

Modifier and Type
Method and
Description

Context
getContext()
Returns the associated
Context.

Listener
getListener()
Returns the associated
Listener.

Param
getParam()
Returns the associated
Param.

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

•

Method Detail

getContext

Context getContext()

Returns the associated Context.

Each CommunicationLifeCycle object has a Context from which it was created (e.g. for a
Subscription the associated Context is the object on which the
Context.makeSubscription() method was invoked).
This method return this Context.

Returns:
the associated Context.
null is never returned.

◊

♦ •

Interface CommunicationLifeCycle

Interface CommunicationLifeCycle 33

getParam

Param getParam()

Returns the associated Param.

Each CommunicationLifeCycle object has a specialized sub−interface of Param that
described the specific creation parameter for that object (e.g. for a Subscription the
associated Param is the second parameter (SubscriptionParam) of
Context.makeSubscription()).
This method return this parameter casted to the super−interface Param.

All parameters returned by this method are bound.

Returns:
the associated Param.
null is never returned.

◊

getListener

Listener getListener()

Returns the associated Listener.

Each CommunicationLifeCycle object has a specialized sub−interface of Listener that
described the specific listener for that object (e.g. for a Subscription the associated
Listener is the Third parameter (SubscriptionListener) of
Context.makeSubscription()).
This method return this parameter casted to the super−interface Listener.

Returns:
the associated Listener.
null is never returned.

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface ActivityLifeCycle

All Superinterfaces:
CommunicationLifeCycle, LifeCycle

All Known Subinterfaces:
EntityClassQuery, EntityFilter, Filter, Query, Subscription, Transaction

public interface ActivityLifeCycle
extends CommunicationLifeCycle

Super−interface common to all lifecycles objects of a given Connection.

The 4 kind of objects (Filter, Query, Subscription and Transaction) that implement this
interface:

•

Interface CommunicationLifeCycle

34 Interface CommunicationLifeCycle

mailto:ftapi@list-group.com

are created by makeSomething methods of their Context,♦
share a common method to get the associated Connection,♦
share a common failure−code for attempted operations when the associated Connection is not in a
good state.

♦

See Also:
CommunicationLifeCycle

Field Summary

Fields

Modifier and
Type

Field and Description

static int
RESULT_INVALID_CONNECTION_STATUS
Failure−code returned when an operation is requested whitin a not correct status of
the associated Connection.

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Connection
getConnection()
Returns the associated Connection.

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

•

Field Detail

RESULT_INVALID_CONNECTION_STATUS

static final int RESULT_INVALID_CONNECTION_STATUS

Failure−code returned when an operation is requested whitin a not correct status of the

◊

♦ •

Interface ActivityLifeCycle

Interface ActivityLifeCycle 35

associated Connection.

Typically an ActivityLifeCycle objects returns this failure−code when the associated
Connection is not in the Connection.STATUS_CONNECTED status.

See Also:
Constant Field Values

Method Detail

getConnection

Connection getConnection()

Returns the associated Connection.

Each ActivityLifeCycle object has a Connection that created it (e.g. for a Subscription
the associated Connection is the first parameter of Context.makeSubscription()).
This method return this Connection.

Returns:
the associated Connection.
null is never returned.

◊

♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityClassQuery

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface EntityClassQuery
extends ActivityLifeCycle

•

Field Summary

Fields

Modifier and Type Field and Description

static int STATUS_QUERIED_NO

static int STATUS_QUERIED_OK

static int STATUS_QUERYING

♦ •

Interface ActivityLifeCycle

36 Interface ActivityLifeCycle

mailto:ftapi@list-group.com

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type
Method and
Description

int query()

Methods inherited from interface ActivityLifeCycle

getConnection

◊

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_QUERYING

static final int STATUS_QUERYING

See Also:
Constant Field Values

◊

STATUS_QUERIED_OK

static final int STATUS_QUERIED_OK

See Also:
Constant Field Values

◊

STATUS_QUERIED_NO

static final int STATUS_QUERIED_NO

See Also:

◊

♦ •

Interface EntityClassQuery

Interface EntityClassQuery 37

Constant Field Values

Method Detail

query

int query()

◊

♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Filter

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

All Known Subinterfaces:
EntityFilter

public interface Filter
extends ActivityLifeCycle

A manner to restrict the set of values notified by a Subscription.

A filter may be used in a subscription to restrict (at the server level) the set of entities that will be notified
to the client application.

Filter Usage

A filter is defined by:

an associated EntityClass,♦
a filter type,♦
and a filter definition,
all used during filter creation,

♦

a filter value,
used during filter extension.

♦

The precise meaning of these 4 things depends from the particular filter and, in general, must be agreed
between the client and the server.
In brief:

Filters are locally created by Context.makeFilter() in which the filter parameters are
described by FilterParam and the event listeners are described by FilterListener.

Once locally created a filter must be also server created, eventually server extended, used in the
Subscription and then server destroyed.

•

Interface EntityClassQuery

38 Interface EntityClassQuery

mailto:ftapi@list-group.com

Filter Lifecycle

See Also:
Context.makeFilter(), FilterParam, FilterListener

Field Summary

Fields

Modifier and Type Field and Description

static int
STATUS_CREATED
Lifecycle status: Filter created on the server and ready to be used.

static int
STATUS_CREATING
Lifecycle status: Filter waiting the create() server−answer.

static int STATUS_DESTROYED

♦ •

Interface Filter

Interface Filter 39

Lifecycle status: Filter destroyed into the server and ready to be released.

static int
STATUS_DESTROYING
Lifecycle status: Filter waiting the destroy() server−answer.

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

int
create()
Try to create this filter on the server.

int
destroy()
Try to destroy this filter on the server.

int
set(String value)
Try to extend this filter on the server.

Methods inherited from interface ActivityLifeCycle

getConnection

◊

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_CREATING

static final int STATUS_CREATING

Lifecycle status: Filter waiting the create() server−answer.
This value may be returned by LifeCycle.getStatus().

◊

♦ •

Interface Filter

40 Interface Filter

Status Entry:
STATUS_INIT create() ok STATUS_CREATING.

Status Activities:
none: waiting an automatic onFilterCreate() call.

Status Exit:
STATUS_CREATINGonFilterCreate() ok STATUS_CREATED.
STATUS_CREATINGonFilterCreate() bad STATUS_DESTROYED.

See Also:
Filter lifecycle, Constant Field Values

STATUS_CREATED

static final int STATUS_CREATED

Lifecycle status: Filter created on the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATINGonFilterCreate() ok STATUS_CREATED.

Status Activities:
the filter may be eventually server extended,♦
the filter may be used in Subscription.♦

Status Exit:
STATUS_CREATEDdestroy() ok STATUS_DESTROYING.

See Also:
Filter lifecycle, Constant Field Values

◊

STATUS_DESTROYING

static final int STATUS_DESTROYING

Lifecycle status: Filter waiting the destroy() server−answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATEDdestroy() ok STATUS_DESTROYING.

Status Activities:
none: waiting an automatic onFilterDestroy() call.

Status Exit:
STATUS_DESTROYINGonFilterDestroy() STATUS_DESTROYED.

See Also:
Filter lifecycle, Constant Field Values

◊

STATUS_DESTROYED

static final int STATUS_DESTROYED

Lifecycle status: Filter destroyed into the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Filter in this status.

Status Entry:
STATUS_DESTROYINGonFilterDestroy() STATUS_DESTROYED.

Status Activities:
LifeCycle.release().

◊

Interface Filter

Interface Filter 41

Status Exit:
STATUS_DESTROYEDLifeCycle.release() STATUS_RELEASED.

See Also:
Filter lifecycle, Constant Field Values

Method Detail

create

int create()

Try to create this filter on the server.

This method must be called only when

the current status is STATUS_INIT,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the create request was sent to server,⋅
the current status changed to STATUS_CREATING,⋅
when the server−answer will be available the
FilterListener.onFilterCreate() will be automatically called to handle
it.

⋅

otherwise

the client has rejected the create,⋅
the create request was not sent to the server,⋅
automatic call of FilterListener.onFilterCreate() will not be made,⋅
the current status remains unchanged.⋅

In the latter case it is a good practice to release this Filter.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not STATUS_INIT,♦
RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

set

int set(String value)

Try to extend this filter on the server.

The filter extension is used to extend an already created filter.

The precise meaning of this value depends from the particular filter and, in general, it must be
agreed between the client and the server.

The server may subsequently returns a FilterSetEvent.RESULT_SYNTAX_ERROR or

◊

♦

Interface Filter

42 Interface Filter

a FilterSetEvent.RESULT_INVALID_FILTER_LEN failure−code if it does not
understand this value or if this value is too long.

This method must be called only when

the current status is STATUS_CREATED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the extension request was sent to server,⋅
when the server−answer will be available the
FilterListener.onFilterSet() will be automatically called to handle it.

⋅

otherwise

the client has rejected the extension,⋅
the extension request was not sent to the server,⋅
automatic call of FilterListener.onFilterSet() will not be made.⋅

In any case the current status remains unchanged.

Parameters:
value − filter extension of the new filter.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise (e.g. the given filter value is null
or empty).

♦

destroy

int destroy()

Try to destroy this filter on the server.

This method must be called only when

the current status is STATUS_CREATED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the destroy request was sent to server,⋅
the current status changed to STATUS_DESTROYING,⋅
when the server−answer will be available the
FilterListener.onFilterDestroy() will be automatically called to
handle it.

⋅

otherwise

the client has rejected the destroy,⋅
the destroy request was not sent to the server,⋅

◊

Interface Filter

Interface Filter 43

automatic call of FilterListener.onFilterDestroy() will not be made,⋅
the current status remains unchanged.⋅

It's not a bad practice to unconditionally release this Filter immediately after this method
invocation without handling the returned value.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityFilter

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, Filter, LifeCycle

public interface EntityFilter
extends Filter

Usually, fasttrack serverices implements a default filter to restrict the set of values notified by a Subscription,
based on full or partial key values.

To use this you must set the filter type value as TYPE_ENTITYFILTER and the Entity Class
ID used by subscription. The filter returned by makeFilter can be safely casted to EntityFilter.
After that, it may be used in a subcription setting an empty EntityKey whill will be used to set filter
key values. Please note, you must create and set up different filters for different subscriptions; a filter is not
allowed to be used for many subscription simultaneously.
To change filter value you may call:

add to add an entity key,♦
del to remove an entity key from the filter,♦
reset to remove all key values from the filter♦

Plese note, the set method doesn't perform any action for this class.

You should call flush after many filter operations to force any buffered action to be sent to the server.

See Also:
Filter, FilterParam, FilterListener

•

Field Summary

Fields

♦ •

Interface EntityFilter

44 Interface EntityFilter

mailto:ftapi@list-group.com

Modifier and Type Field and Description

static int
TYPE_ENTITYFILTER
The filter type value.

Fields inherited from interface Filter

STATUS_CREATED, STATUS_CREATING, STATUS_DESTROYED,
STATUS_DESTROYING

◊

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

int
add(EntityKey entityKey)
Add the EntityKey to the filter.

int
del(EntityKey entityKey)
Remove the EntityKey from the filter.

int
flush()
Send to the server any buffered filter action.

int
reset()
Remove all the key values from the filter.

Methods inherited from interface Filter

create, destroy, set

◊

Methods inherited from interface ActivityLifeCycle

getConnection

◊

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Interface EntityFilter

Interface EntityFilter 45

Field Detail

TYPE_ENTITYFILTER

static final int TYPE_ENTITYFILTER

The filter type value.
See Also:

Constant Field Values

◊

♦

Method Detail

add

int add(EntityKey entityKey)

Add the EntityKey to the filter.

Parameters:
entityKey − the partial or full EntityKey.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
Filter.STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

del

int del(EntityKey entityKey)

Remove the EntityKey from the filter.

Parameters:
entityKey − the partial or full EntityKey.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
Filter.STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

reset

int reset()

Remove all the key values from the filter.
Returns:

RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
Filter.STATUS_CREATED,

♦

◊

♦

Interface EntityFilter

46 Interface EntityFilter

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦
flush

int flush()

Send to the server any buffered filter action.
Returns:

RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
Filter.STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Query

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Query
extends ActivityLifeCycle

A client's request to a server to obtain a set of entities (or rows) from its own Data Base.

An entire result−set (or a part of it, as eventually requested by queryRows(int, int)) is returned to the
client application, one row at time.

Query Usage

A query is defined by:

a QueryID identifier that identifies the query in the server,♦
an optional Entity that is the optional argument of the query.♦

The precise meaning of the QueryID identifier must be agreed between the client and the server.
In brief:

Queries are locally created by Context.makeQuery() in which the query parameters are
described by QueryParam and the event listeners are described by QueryListener.

Once locally created a query must be also server created, eventually result−set partitioned, used and
then server destroyed.

•

Interface EntityFilter

Interface EntityFilter 47

mailto:ftapi@list-group.com

Query Lifecycle

See Also:
Context.makeQuery(), QueryParam, QueryListener

Field Summary

Fields

Modifier and Type Field and Description

static int
STATUS_CREATED
Lifecycle status: Query created on the server and ready to be used.

static int
STATUS_CREATING
Lifecycle status: Query waiting the create() server−answer.

static int STATUS_DESTROYED

♦ •

Interface Query

48 Interface Query

Lifecycle status: Query destroyed into the server and ready to be released.

static int
STATUS_DESTROYING
Lifecycle status: Query waiting the destroy() server−answer.

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

int
create()
Try to create this query on the server.

int
destroy()
Try to destroy this query on the server.

int
queryRows(int firstRow, int rowNumber)
Try to retrieve a subset of the result−set of this query from the server.

Methods inherited from interface ActivityLifeCycle

getConnection

◊

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_CREATING

static final int STATUS_CREATING

Lifecycle status: Query waiting the create() server−answer.
This value may be returned by LifeCycle.getStatus().

◊

♦ •

Interface Query

Interface Query 49

Status Entry:
STATUS_INIT create() ok STATUS_CREATING.

Status Activities:
none: waiting an automatic onQueryCreate() call.

Status Exit:
STATUS_CREATINGonQueryCreate() ok STATUS_CREATED.
STATUS_CREATINGonQueryCreate() bad STATUS_DESTROYED.

See Also:
Query lifecycle, Constant Field Values

STATUS_CREATED

static final int STATUS_CREATED

Lifecycle status: Query created on the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATINGonQueryCreate() ok STATUS_CREATED.

Status Activities:
the query may be eventually result−set partitioned,♦
the query is used by onQueryNotify() to retrieve the result−set one row
at time.

♦

Status Exit:
STATUS_CREATEDdestroy() ok STATUS_DESTROYING.

See Also:
Query lifecycle, Constant Field Values

◊

STATUS_DESTROYING

static final int STATUS_DESTROYING

Lifecycle status: Query waiting the destroy() server−answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CREATEDdestroy() ok STATUS_DESTROYING.

Status Activities:
none: waiting an automatic onQueryDestroy() call.

Status Exit:
STATUS_DESTROYINGonQueryDestroy() STATUS_DESTROYED.

See Also:
Query lifecycle, Constant Field Values

◊

STATUS_DESTROYED

static final int STATUS_DESTROYED

Lifecycle status: Query destroyed into the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Query in this status.

Status Entry:
STATUS_DESTROYINGonQueryDestroy() STATUS_DESTROYED.

Status Activities:

◊

Interface Query

50 Interface Query

LifeCycle.release().
Status Exit:

STATUS_DESTROYEDLifeCycle.release() STATUS_RELEASED.
See Also:

Query lifecycle, Constant Field Values

Method Detail

create

int create()

Try to create this query on the server.

This method must be called only when

the current status is STATUS_INIT,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the create request was sent to server,⋅
the current status changed to STATUS_CREATING,⋅
when the server−answer will be available the
QueryListener.onQueryCreate() will be automatically called to handle it.

⋅

otherwise

the client has rejected the create,⋅
the create request was not sent to the server,⋅
automatic call of QueryListener.onQueryCreate() will not be made,⋅
the current status remains unchanged.⋅

In the latter case it is a good practice to release this Query.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not STATUS_INIT,♦
ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if
the associated Connection current status is not
Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

queryRows

int queryRows(int firstRow,
 int rowNumber)

Try to retrieve a subset of the result−set of this query from the server.

The firstRow and rowNumber parameters describe the subset of result−set to be
retrieved.

This method must be called only when

◊

♦

Interface Query

Interface Query 51

the current status is STATUS_CREATED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the subset request was sent to server,⋅
when the server−answer will be available the
QueryListener.onQueryRows() will be automatically called to handle it.

⋅

otherwise

the client has rejected the subset request,⋅
the subset request was not sent to the server,⋅
automatic call of QueryListener.onQueryRows() will not be made.⋅

In any case the current status remains unchanged.

Parameters:
firstRow − index (1−based) of the first row to be retrieved.
rowNumber − number of rows to be retrieved.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise (e.g. firstRow <= 0 or
rowNumber <= 0).

♦

destroy

int destroy()

Try to destroy this query on the server.

This method must be called only when

the current status is STATUS_CREATED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the destroy request was sent to server,⋅
the current status changed to STATUS_DESTROYING,⋅
when the server−answer will be available the
QueryListener.onQueryDestroy() will be automatically called to handle it.

⋅

otherwise

the client has rejected the destroy,⋅
the destroy request was not sent to the server,⋅
automatic call of QueryListener.onQueryDestroy() will not be made,⋅
the current status remains unchanged.⋅

It's not a bad practice to unconditionally release this Query immediately after this method
invocation without handling the returned value.

◊

Interface Query

52 Interface Query

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_CREATED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Subscription

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Subscription
extends ActivityLifeCycle

An arrangement with the server for receiving a continuing set of interesting entities of the same EntityClass.

Opening a subscription on a EntityClass of a Server entails both the initial acquisition of the Entitys of
the EntityClass of the Server and the subsequent notification of any additions or cancellations executed by the
Server on that EntityClass.

Special subscription modalities enable the acquisition of just a subset of the Entities of a EntityClass of the
Server: see the section below.

Subscription Usage

A subscription is described by:

an EntityClass on which the Subscription is made,♦
a couple (EntityClass Version, EntityClass TimeStamp) that refers the last past notification received
by the client (see Incremental Subscriptions below),

♦

a query selection criteria used by the server to chose whose Entities must be received:
all entities, both past and current values,◊
all entities that match a partial EntityKey, both past and current values,◊
all entities, but only past values,◊
all entities, but only current values,◊

♦

an optional EntityKey that describe the partial EntityKey to be used in case of the query selection
criteria indicates a partial EntityKey (see Partial Subscriptions below),

♦

an optional filter to restrict (at the server level) the set of entities that will be notified,♦
a data transimission policy used by the server to eventually adapt the sending server speed with the
reception client speed,

♦

an optional mask to restrict (at the server level) the set of fields of entities that will be notified.♦
In brief:

Subscriptions are created by Context.makeSubscription() in which the subscription
parameters are described by SubscriptionParam and the event listeners are described by

•

Interface Subscription

Interface Subscription 53

mailto:ftapi@list-group.com

SubscriptionListener.

Once created a subscription must be started with the server, used (eventually via refreshEntity) and
then stopped from the server.

Subscription Lifecycle

Incremental Subscriptions

This section outlines how to manage incremental subscriptions, in which the server is only required to send
updated contents of an EntityClass, rather than sending all its records.

A client application can consequently keep a local data base aligned with the market server's, or more
generally avoid processing data twice, by minimizing, at the same time, the volume of data to transfer and the
needed time.

In particular, the subscription allows you to specify the pair of values (EntityClass Version, EntityClass
TimeStamp) i.e., respectively, the last version index of the EntityClass and the time−stamp of the last Entity
(record) received of that class during the previous subscription.

Interface Subscription

54 Interface Subscription

Thus, if the version of the EntityClass maintained in the server coincides with the one supplied, only those
entities with a time stamp that is later than the one supplied will be sent.

On the other hand if the version of the class is earlier than the server's current one, then
SubscriptionStartEvent.isEntityClassReset() will be true . This indicates a general
invalidation of any entities from that EntityClass that have been archived until that moment. In the latter case
it will not be possible to proceed to an incremental acquisition, but all the entities in the EntityClass will have
to be received.

In order to be able to make this data available, the client application has to maintain for each EntityCass the
following information:

Current time stamp,♦
Current version.♦

The current time stamp can be maintained by updating local TimeStamp data whenever
ACTION_ENTITY_ADD, ACTION_ENTITY_RWT or ACTION_ENTITY_DEL operations are made, on
the basis of the SubscriptionNotifyEvent.getTimeStamp() returned value.

The current version can be maintained by acquiring the value of the version at the opening of the subscription
by SubscriptionStartEvent.getEntityClassVersionOnServer(), and updating it on every
version variation of the server class, this basically means at each notification of an ACTION_ENTITY_KIL
operation, by setting it to the SubscriptionNotifyEvent.getTimeStamp().getDateTime() value.

Remarks

ACTION_ENTITY_DEL and ACTION_ENTITY_KIL operations with
SubscriptionNotifyEvent.getKeyID() > 0, should be intended as notifications of (logical or
physical} cancellation of an individual entity at a server level. In this case the Entity returned by
SubscriptionNotifyEvent.getEntity() is generally undefined on any fields apart from those
associated with SubscriptionNotifyEvent.getKeyID().

Operations of ACTION_ENTITY_KIL with SubscriptionNotifyEvent.getKeyID()<= 0 should be intended
as the physical cancellation of every entity in the specified EntityClass that has been acquired beforehand. In
this case: SubscriptionNotifyEvent.getEntity() == null.

Partial Subscriptions

This section outlines how to manage partial subscriptions, in which the server is requested to send only those
entities in a EntityClass that satisfy certain constraints.

Partial subscriptions can be formulated in two manners:

by setting the parameter SubscriptionParam.getQueryType() to the value
SubscriptionParam.QUERY_TYPE_SET and setting the parameter
SubscriptionParam.getEntityKey() to an appropriate EntityKey (an Entitykey where the
number of set segments is <= number of segments of the given KeyID),

♦

or by setting the parameter SubscriptionParam.getFilter() to a non−null value
representing an appropriate Filter in Filter.STATUS_CREATED status.

♦

In the first case the server will send only Entities whose complete EntityKey match the given partial
EntityKey.

In the latter case the server will send only Entities that satisfy the given filter.

Interface Subscription

Interface Subscription 55

Both manners cannot coexist.

See Also:
Context.makeSubscription(), SubscriptionParam, SubscriptionListener

Field Summary

Fields

Modifier and Type Field and Description

static int
STATUS_STARTED
Lifecycle status: Subscription started and ready to be used.

static int
STATUS_STARTING
Lifecycle status: Subscription waiting the start() server−answer.

static int
STATUS_STOPPED
Lifecycle status: Subscription stopped with the server and ready to be released.

static int
STATUS_STOPPING
Lifecycle status: Subscription waiting the stop() server−answer.

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

int
refreshEntity(EntityKey entityKey)
Request the server to re−publish a single complete (not masked) Entity.

int
start()
Try to start this subscription with the server.

int
stop()
Try to stop this subscription with the server.

Methods inherited from interface ActivityLifeCycle

getConnection

◊

♦

•

Interface Subscription

56 Interface Subscription

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

Field Detail

STATUS_STARTING

static final int STATUS_STARTING

Lifecycle status: Subscription waiting the start() server−answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT start() ok STATUS_STARTING.

Status Activities:
none: waiting an automatic onSubscriptionStart() call.

Status Exit:
STATUS_STARTINGonSubscriptionStart() ok STATUS_STARTED.
STATUS_STARTINGonSubscriptionStart() bad STATUS_STOPPED.

See Also:
Subscription lifecycle, Constant Field Values

◊

STATUS_STARTED

static final int STATUS_STARTED

Lifecycle status: Subscription started and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_STARTINGonSubscriptionStart() ok STATUS_STARTED.

Status Activities:
the subscription is used by
SubscriptionListener.onSubscriptionNotify() to get all
interesting entities,

♦

the refreshEntity() may be eventually used.♦
Status Exit:

STATUS_STARTEDstop() ok STATUS_STOPPING.
See Also:

Subscription lifecycle, Constant Field Values

◊

STATUS_STOPPING

static final int STATUS_STOPPING

Lifecycle status: Subscription waiting the stop() server−answer.
This value may be returned by LifeCycle.getStatus().

◊

♦ •

Interface Subscription

Interface Subscription 57

Status Entry:
STATUS_STARTEDstop() ok STATUS_STOPPING.

Status Activities:
none: waiting an automatic onSubscriptionStop() call.

Status Exit:
STATUS_STOPPINGonSubscriptionStop() STATUS_STOPPED.

See Also:
Subscription lifecycle, Constant Field Values

STATUS_STOPPED

static final int STATUS_STOPPED

Lifecycle status: Subscription stopped with the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Subscription in this status.

Status Entry:
STATUS_STOPPINGonSubscriptionStop() STATUS_STOPPED.

Status Activities:
LifeCycle.release().

Status Exit:
STATUS_STOPPEDLifeCycle.release() STATUS_RELEASED.

See Also:
Subscription lifecycle, Constant Field Values

◊

Method Detail

start

int start()

Try to start this subscription with the server.

This method must be called only when

the current status is STATUS_INIT,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the start request was sent to server,⋅
the current status changed to STATUS_STARTING,⋅
when the server−answer will be available the
SunscriptionListener.onSubscriptionStart() will be automatically
called to handle it.

⋅

otherwise

the client has rejected the start,⋅
the start request was not sent to the server,⋅
automatic call of SubscriptionListener.onSubscriptionStart() will⋅

◊

♦

Interface Subscription

58 Interface Subscription

not be made,
the current status remains unchanged.⋅

In the latter case it is a good practice to release this Subscription.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not STATUS_INIT,♦
RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦
refreshEntity

int refreshEntity(EntityKey entityKey)

Request the server to re−publish a single complete (not masked) Entity.

This method is useful with masked subscriptions to retrieve all fields of an interesting entity.

This method must be called only when

the current status is STATUS_STARTED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the re−publish request was sent to server,⋅
when the server−answer will be available (please note that a server−answer will be
returned if and only if the requested Entity exists in the server, otherwise there will
not be any failure indication of any sort!) the
SubscriptionListener.onSubscriptionNotify() will be
automatically called to handle it and in this case all fields of
SubscriptionNotifyEvent.getEntity() will be available, even if this
subscription is masked: the SubscriptionNotifyEvent.isMasked()
method may be used to discriminate between maske and not−masked entities.

⋅

otherwise

the client has rejected the re−publish request,⋅
the re−publish request was not sent to the server,⋅
automatic call of SubscriptionListener.onSubscriptionNotify()
will not be made.

⋅

In any case the current status remains unchanged.

Parameters:
entityKey − the entitykey that identifies the requested entity.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_STARTED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise (e.g. the entityKey parameter is
null or it refers an EntityClass different from the subscribed class).

♦

◊

Interface Subscription

Interface Subscription 59

stop

int stop()

Try to stop this subscription with the server.

This method must be called only when

the current status is STATUS_STARTED,⋅
the associated Connection current status is Connection.STATUS_CONNECTED.⋅

If this method invocation completed successfully,
then

the stop request was sent to server,⋅
the current status changed to STATUS_STOPPING,⋅
when the server−answer will be available the
SubscriptionListener.onSubscriptionStop() will be automatically
called to handle it.

⋅

otherwise

the client has rejected the stop,⋅
the stop request was not sent to the server,⋅
automatic call of SubscriptionListener.onSubscriptionStop() will
not be made,

⋅

the current status remains unchanged.⋅
It's not a bad practice to unconditionally release this Subscription immediately after this
method invocation without handling the returned value.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not
STATUS_STARTED,

♦

RESULT_INVALID_CONNECTION_STATUS if the associated Connection
current status is not Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Transaction

All Superinterfaces:
ActivityLifeCycle, CommunicationLifeCycle, LifeCycle

public interface Transaction
extends ActivityLifeCycle

A client's request to the server to add, remove or modify an entity in its own Data Base.

•

Interface Subscription

60 Interface Subscription

mailto:ftapi@list-group.com

Transaction Usage

A new transaction (i.e. a new client's request to the server) is defined by:

the requested action: add or modify or logically remove or physically remove,♦
the entity on which the action will be done,♦
a KeyID of the EntityClass of that Entity
(all the KeyID fields of the Entity must be properly filled),

♦

an optional mask that describes which fields of the Entity must be filled,♦
an eventual request to obtain an Entity inside the result that will be sent from the server.♦

Once the transaction is properly sent to the server:
its TransactionID may be retrieved and saved for future use,♦
its status may be queried using the query() method.♦

The TransactionID of a sent transaction may be saved, i.e. the 5 int values that represents the TransactionID
may be properly saved (see TransactionID for details). From these saved values it's possibile to recreate
the original TransactionID and then create a Transaction object, that represents this past transaction, using the
following two values:

this past pending TransactionID,♦
an eventual request to obtain an Entity inside the query result that will be sent from the server.♦

In this manner this created Transaction object may be used to query the status of this past Transaction to the
server.
In brief:

Transactions are locally created by Context.makeTransaction() in which the transaction
parameters are described by TransactionParam and the event listeners are described by
TransactionListener.

Once locally created a transaction may be sent to the server, and/or its status may be queried to the
server.
It is also possibile to query the status of a past pending transaction if the programmer created a new
Transaction with a saved TransactionID of a sent transaction.

Transaction Lifecycle

Interface Transaction

Interface Transaction 61

See Also:
Context.makeTransaction(), TransactionParam, TransactionListener

Field Summary

Fields

Modifier and Type Field and Description

static int
STATUS_ABORTED
Lifecycle and Transaction status: Transaction completed
unsuccessfully and ready to be released.

static int
STATUS_COMMITTED
Lifecycle and Transaction status: Transaction completed successfully
and ready to be released.

static int STATUS_FLYING

♦ •

Interface Transaction

62 Interface Transaction

Lifecycle and Transaction status: Transaction is flying waiting to
become STATUS_COMMITTED or STATUS_ABORTED.

Fields inherited from interface ActivityLifeCycle

RESULT_INVALID_CONNECTION_STATUS

◊

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

TransactionID
getTransactionID()
Returns the TransactionID of this (new or past) transaction.

int
query()
Try to query the server for the status of this (new or past) transaction.

int
send()
Try to send this new transaction to the server.

Methods inherited from interface ActivityLifeCycle

getConnection

◊

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_FLYING

static final int STATUS_FLYING

Lifecycle and Transaction status: Transaction is flying waiting to become
STATUS_COMMITTED or STATUS_ABORTED.
This value may be returned by LifeCycle.getStatus().

Status Entry:

◊

♦ •

Interface Transaction

Interface Transaction 63

STATUS_INIT send() ok STATUS_FLYING.
STATUS_INIT query() ok STATUS_FLYING.

Status Activities:
query(),
or waiting an automatic onTransactionSend() call,
or waiting an automatic onTransactionQuery() call.

Status Exit:
STATUS_FLYING onTransactionSend() bad STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_COMMITTED
STATUS_COMMITTED.
STATUS_FLYING onTransactionQuery()
RESULT_INVALID_TRANSACTION_ID STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_GENERIC_ERROR
STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_ABORTED
STATUS_ABORTED.

See Also:
Transaction lifecycle, Constant Field Values

STATUS_COMMITTED

static final int STATUS_COMMITTED

Lifecycle and Transaction status: Transaction completed successfully and ready to be
released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Transaction in this status.

Status Entry:
STATUS_FLYING onTransactionQuery() RESULT_COMMITTED
STATUS_COMMITTED.

Status Activities:
LifeCycle.release().

Status Exit:
STATUS_COMMITTEDLifeCycle.release() STATUS_RELEASED.

See Also:
Transaction lifecycle, Constant Field Values

◊

STATUS_ABORTED

static final int STATUS_ABORTED

Lifecycle and Transaction status: Transaction completed unsuccessfully and ready to be
released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Transaction in this status.

Status Entry:
STATUS_FLYING onTransactionSend() bad STATUS_ABORTED.
STATUS_FLYING onTransactionQuery()
RESULT_INVALID_TRANSACTION_ID STATUS_ABORTED.
STATUS_FLYING onTransactionQuery() RESULT_GENERIC_ERROR
STATUS_ABORTED.

◊

Interface Transaction

64 Interface Transaction

STATUS_FLYING onTransactionQuery() RESULT_ABORTED
STATUS_ABORTED.

Status Activities:
LifeCycle.release().

Status Exit:
STATUS_ABORTEDLifeCycle.release() STATUS_RELEASED.

See Also:
Transaction lifecycle, Constant Field Values

Method Detail

send

int send()

Try to send this new transaction to the server.

This method must be called only when

the current status is STATUS_INIT,⋅
the associated Connection current status is Connection.STATUS_CONNECTED,⋅
this is a new transaction (i.e. the past TransactionID is null).⋅

If this method invocation completed successfully,
then

the transaction was sent to server,⋅
the current status changed to STATUS_FLYING,⋅
when the server−answer will be available the
TransactionListener.onTransactionSend() will be automatically
called to handle it.

⋅

otherwise

the client has rejected the send,⋅
the transaction was not sent to the server,⋅
automatic call of TransactionListener.onTransactionSend() will not
be made,

⋅

the current status remains unchanged.⋅
In the latter case it is a good practice to release this Transaction.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not STATUS_INIT,♦
ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if
the associated Connection current status is not
Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise
(e.g. the Entity is null).

♦

◊

♦

Interface Transaction

Interface Transaction 65

query

int query()

Try to query the server for the status of this (new or past) transaction.

This method must be called only when

the current status is STATUS_INIT or STATUS_FLYING,⋅
the associated Connection current status is Connection.STATUS_CONNECTED,⋅
this transaction has a valid TransactionID (getTransactionID() is not null).⋅

If this method invocation completed successfully,
then

the query was sent to server,⋅
the current status changed to STATUS_FLYING,⋅
when the server−answer will be available the
TransactionListener.onTransactionQuery() will be automatically
called to handle it.

⋅

otherwise

the client has rejected the query,⋅
the query was not sent to the server,⋅
automatic call of TransactionListener.onTransactionQuery() will not
be made,

⋅

the current status remains unchanged.⋅
In the latter case it is a good practice to release this Transaction.

Returns:
RESULT_OK if the operation completed successfully,♦
RESULT_INVALID_STATUS if the current status is not STATUS_INIT
nor STATUS_FLYING,

♦

ActivityLifeCycle.RESULT_INVALID_CONNECTION_STATUS if
the associated Connection current status is not
Connection.STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise
(e.g. getTransactionID() is null).

♦

◊

getTransactionID

TransactionID getTransactionID()

Returns the TransactionID of this (new or past) transaction.

If there is a valid past TransactionID then this method returns it, otherwise it returns
the new TransactionID that will be used by the send() method.

Returns:
the TransactionID of this (new or past) transaction.
null is returned when the past TransactionID exists but it does not
belongs to the associated connection.

◊

Submit a bug or feature to FT\API Programming Support

Interface Transaction

66 Interface Transaction

mailto:ftapi@list-group.com

JavaScript is disabled on your browser.
it.list.jft

Interface Connection

All Superinterfaces:
CommunicationLifeCycle, LifeCycle

public interface Connection
extends CommunicationLifeCycle

Logical bidirectional channel with a server.

Within the same JFT application several Connections can be created and then opened with the same Server or
with several Servers.

Connection Usage

Every new connection is described by:

a pair remote host, remote port) that define the principal server to which the client must talk,♦
an optional pair remote alternative host, remote alternative port) that define an optional server server
to which the client must talk in the case the connection to the principal server failed,

♦

the transport−type to be used,♦
an optional pair proxy host, proxy port) that describe the proxy to be used when the transport−type is
not TCP/IP,

♦

an indication about a compressed transmission between client and server,♦
a charset used to code/decode the strings over the line,♦
an optional market/service name to which the client must talk,♦
an indication of the type of activities that will be done on the connection,♦
a pair (user−name, password) that describe the user associated to the connection,♦
a ClientID that identifies the client,♦
a client application revision,♦
a client application signature,♦
an authorization file or an authorization key that allow a client to open and use a connection with a
server.

♦

In brief:
Connections are created by Context.makeConnection() in which the connection parameters
are described by ConnectionParam and the event listeners are described by
ConnectionListener.

Once created a connection must be opened (attached to the server), used, and then closed (detached
from the server).

Connection Lifecycle

•

Interface Connection

Interface Connection 67

See Also:
Context.makeConnection(), ConnectionParam, ConnectionListener

Field Summary

Fields

Modifier and Type Field and Description

static int STATUS_CONNECTED

♦ •

Interface Connection

68 Interface Connection

Lifecycle status: Connection connected to the server and ready to
be used.

static int
STATUS_CONNECTING
Lifecycle status: Connection waiting the open()
server−answer.

static int
STATUS_DISCONNECTED
Lifecycle status: Connection no more connected to the server and
ready to be released.

static int
STATUS_DISCONNECTING
Lifecycle status: Connection waiting the close()
server−answer.

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

int
close()
Try to close this connection with a given server.

int
open()
Try to open this connection with a given server.

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_CONNECTING

static final int STATUS_CONNECTING

Lifecycle status: Connection waiting the open() server−answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_INIT open() ok STATUS_CONNECTING.

◊

♦ •

Interface Connection

Interface Connection 69

Status Activities:
none: waiting an automatic onConnectionOpen() call.

Status Exit:
STATUS_CONNECTINGonConnectionOpen() ok STATUS_CONNECTED.
STATUS_CONNECTINGonConnectionOpen() bad
STATUS_DISCONNECTED.
STATUS_CONNECTINGonConnectionLost() STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

STATUS_CONNECTED

static final int STATUS_CONNECTED

Lifecycle status: Connection connected to the server and ready to be used.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONNECTINGonConnectionOpen() ok STATUS_CONNECTED.

Status Activities:
the connection may be used to create ActivityLifeCycle objects (with
Context methods makeSubscription(), makeQuery(),
makeTransanction() and makeFilter()),

♦

the connection may be used in TransactionID.belongsTo(),♦
ActivityLifeCycle objects may be used (e.g.
Subscription.start(), Query.create(), etc...).

♦

Status Exit:
STATUS_CONNECTEDclose() ok STATUS_DISCONNECTING.
STATUS_CONNECTEDonConnectionLost() STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

◊

STATUS_DISCONNECTING

static final int STATUS_DISCONNECTING

Lifecycle status: Connection waiting the close() server−answer.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONNECTEDclose() ok STATUS_DISCONNECTING.

Status Activities:
none: waiting an automatic onConnectionClose() call.

Status Exit:
STATUS_DISCONNECTINGonConnectionClose()
STATUS_DISCONNECTED.
STATUS_DISCONNECTINGonConnectionLost()
STATUS_DISCONNECTED.

See Also:
Connection lifecycle, Constant Field Values

◊

STATUS_DISCONNECTED

static final int STATUS_DISCONNECTED

◊

Interface Connection

70 Interface Connection

Lifecycle status: Connection no more connected to the server and ready to be released.
This value may be returned by LifeCycle.getStatus().

It's always a good practice to release a Connection in this status.

Status Entry:
STATUS_DISCONNECTINGonConnectionClose()
STATUS_DISCONNECTED.
any status onConnectionLost() STATUS_DISCONNECTED.

Status Activities:
LifeCycle.release().

Status Exit:
STATUS_DISCONNECTEDLifeCycle.release() STATUS_RELEASED.

See Also:
Connection lifecycle, Constant Field Values

Method Detail

open

int open()

Try to open this connection with a given server.

This method must be called only when current status is STATUS_INIT.

If this method invocation completed successfully,
then

the open request was sent to server,⋅
the current status changed to STATUS_CONNECTING,⋅
when the server−answer will be available the
ConnectionListener.onConnectionOpen() will be automatically called
to handle it.

⋅

otherwise

the client has rejected the open,⋅
the open request was not sent to the server,⋅
automatic call of ConnectionListener.onConnectionOpen() will not be
made,

⋅

the current status remains unchanged.⋅
In the latter case it is a good practice to release this Connection.

Returns:
RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_INIT,

♦

RESULT_GENERIC_ERROR otherwise
(e.g. some server name (as host or the optionals alternative host and proxy
host) is unresolvable).

♦

◊

♦

Interface Connection

Interface Connection 71

close

int close()

Try to close this connection with a given server.

This method must be called only when current status is STATUS_CONNECTED.

If this method invocation completed successfully,
then

the close request was sent to server,⋅
the current status changed to STATUS_DISCONNECTING,⋅
when the server−answer will be available the
ConnectionListener.onConnectionClose() will be automatically called
to handle it.

⋅

otherwise

the client has rejected the close,⋅
the close request was not sent to the server,⋅
automatic call of ConnectionListener.onConnectionClose() will not be
made,

⋅

the current status remains unchanged.⋅
It's not a bad practice to unconditionally release this Connection immediately after this
method invocation without handling the returned value.

Returns:
RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONNECTED,

♦

RESULT_GENERIC_ERROR otherwise.♦

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface MulticastConnection

All Superinterfaces:
CommunicationLifeCycle, LifeCycle

public interface MulticastConnection
extends CommunicationLifeCycle

•

Field Summary

Fields

Modifier and Type Field and Description

♦ •

Interface Connection

72 Interface Connection

mailto:ftapi@list-group.com

static int STATUS_CONNECTED

static int STATUS_DISCONNECTED

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

Method Summary

Methods

Modifier and Type Method and Description

int close()

int enableNotify(int entityClassID)

int open()

Methods inherited from interface CommunicationLifeCycle

getContext, getListener, getParam

◊

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

STATUS_CONNECTED

static final int STATUS_CONNECTED

See Also:
Constant Field Values

◊

STATUS_DISCONNECTED

static final int STATUS_DISCONNECTED

See Also:
Constant Field Values

◊

♦

Method Detail
♦

•

Interface MulticastConnection

Interface MulticastConnection 73

open

int open()

◊

close

int close()

◊

enableNotify

int enableNotify(int entityClassID)

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Context

All Superinterfaces:
LifeCycle

public interface Context
extends LifeCycle

Container and factory of inter−related communication objects.

Within the same JFT application several Contexts can be created and then used to interact with one or more
FastTrack servers.

This interface contains methods to create CommunicationLifeCycle objects: i.e. Connections and their related
ActivityLifeCycle objects:

Filter,♦
Query,♦
Subscription,♦
Transaction.♦

Methods to create their parameters are provided as well.

Please note that each Connection and its related ActivityLifeCycle objects are enforced to exist in the same
Context: e.g. it's not possible to create a subscription in a Context that does not contains the associated
Connection.

Context Lifecycle

•

Interface MulticastConnection

74 Interface MulticastConnection

mailto:ftapi@list-group.com

See Also:
JFT.makeContext(), Acceptable Values

Field Summary

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

EntityClass
getEntityClass(int EntityClassID)
Returns the registered EntityClass corresponding to the given
EntityClassID, if registered in this context.

EntityClass
getEntityClass(String EntityClassName)
Returns the registered EntityClass in this context
corresponding to the given EntityClass Name.

boolean
isRegistered(int EntityClassID)
Returns the indication that a given EntityClass (identified by
an EntityClassID) has been registered in this context.

♦

•

Interface Context

Interface Context 75

Connection
makeConnection(ConnectionParam param,
ConnectionListener listener)
Create and returns a new connection.

ConnectionParam
makeConnectionParam()
Create and returns a new connection parameter container.

Mask
makeEmptyMask(int entityClassID)
Create and returns a new empty mask for a given Entity Class
registered in this context.

EntityClassQuery
makeEntityClassQuery(Connection connection,
EntityClassQueryParam param,
EntityClassQueryListener listener)

EntityClassQueryParam makeEntityClassQueryParam()

Filter

makeFilter(Connection connection,
FilterParam param,
FilterListener listener)
Create and returns a new filter.

FilterParam
makeFilterParam()
Create and returns a new filter parameter container.

MulticastConnection
makeMulticastConnection(MulticastConnectionParam param,
MulticastConnectionListener listener)

MulticastConnectionParam makeMulticastConnectionParam()

Query
makeQuery(Connection connection,
QueryParam param, QueryListener listener)
Create and returns a new query.

QueryParam
makeQueryParam()
Create and returns a new query parameter container.

Subscription

makeSubscription(Connection connection,
SubscriptionParam param,
SubscriptionListener listener)
Create and returns a new subscription.

SubscriptionParam
makeSubscriptionParam()
Create and returns a new subscription parameter container.

Transaction

makeTransaction(Connection connection,
TransactionParam param,
TransactionListener listener)
Create and returns a new transaction.

TransactionParam
makeTransactionParam()
Create and returns a new transaction parameter container.

int

register(EntityClass entityClass)
Like JFT.register, this method registers another
EntityClass at the Context level that increases the number of
the classes managed by the library.

int register(EntityClass[] entityClass)
Like register(it.list.jft.EntityClass), this

Interface Context

76 Interface Context

method register an array of EntityClass.

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

Method Detail

register

int register(EntityClass entityClass)

Like JFT.register, this method registers another EntityClass at the Context level that
increases the number of the classes managed by the library.

The EntityClass registered at the Context level are visible only through the connections
created from this Context. This could be useful when you need to create a connection and
subscribe entities from another version of the same service. With this method you can
override the entities registered with the JFT.register as it enables you to connect and
receive different versions of the same entity. When an Entity is received, the API looks for a
registered entity at the Context level and, if not found, looks for it in the entities registered
with the JFT.register.

Parameters:
entityClass − EntityClass to be registered.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. some
entityClass does not refer a valid EntityClass).

♦

◊

register

int register(EntityClass[] entityClass)

Like register(it.list.jft.EntityClass), this method register an array of
EntityClass.
Parameters:

entityClass − Array of EntityClass to be registered.
Returns:

LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. some
entityClass does not refer a valid EntityClass).

♦

◊

isRegistered

boolean isRegistered(int EntityClassID)

Returns the indication that a given EntityClass (identified by an EntityClassID) has been
registered in this context.

Parameters:
EntityClassID − ID of the EntityClass to be checked.

◊

♦ •

Interface Context

Interface Context 77

Returns:
the indication that a given EntityClass (identified by an EntityClassID) has been
registered.
false is returned when the current status is LifeCycle.STATUS_INIT.

getEntityClass

EntityClass getEntityClass(int EntityClassID)

Returns the registered EntityClass corresponding to the given EntityClassID, if registered in
this context.

Parameters:
EntityClassID − ID of the EntityClass to be retrieved.

Returns:
the registered EntityClass corresponding to the given EntityClassID.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

◊

getEntityClass

EntityClass getEntityClass(String EntityClassName)

Returns the registered EntityClass in this context corresponding to the given EntityClass
Name.

Parameters:
EntityClassName − The name of the EntityClass to be retrieved.

Returns:
the registered EntityClass corresponding to the given EntityClass Name.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

◊

makeEmptyMask

Mask makeEmptyMask(int entityClassID)

Create and returns a new empty mask for a given Entity Class registered in this context.

A mask may be used in subscriptions (SubscriptionParam.setMask()) or
transactions (TransactionParam.setMask()).

Parameters:
entityClassID − Entity Class ID of the market class.

Returns:
the new empty mask.
null is returned when the parameter entityClassID is wrong.

◊

makeConnection

Connection makeConnection(ConnectionParam param,
ConnectionListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Create and returns a new connection.

◊

Interface Context

78 Interface Context

The current status of the returned connection is STATUS_INIT.

At the return of this method the given ConnectionParam parameter container is bound.

Parameters:
param − connection parameter container.
listener − connection listener.

Returns:
the new connection.
null is never returned.

Throws:
NullPointerException − if some parameter is null.
IllegalArgumentException − if Param contains un−acceptable values.
IllegalStateException − if the current status is not STATUS_INIT.

See Also:
Acceptable Values

makeConnectionParam

ConnectionParam makeConnectionParam()

Create and returns a new connection parameter container.

Each parameter of the returned container has its value equal to default−value as described in
the corresponding ConnectionParam.getSomething description.

Returns:
the new connection parameter container.
null is returned when the current status is not STATUS_INIT.

◊

makeFilter

Filter makeFilter(Connection connection,
FilterParam param,
FilterListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Create and returns a new filter.

The current status of the returned filter is STATUS_INIT.

At the return of this method the given FilterParam parameter container is bound.

Parameters:
connection − associated connection.
param − filter parameter container.
listener − filter listener.

Returns:
the new filter.
null is never returned.

Throws:
NullPointerException − if some parameter is null.
IllegalArgumentException − if Param contains un−acceptable values,

◊

Interface Context

Interface Context 79

or the given connection is not associated to this context.
IllegalStateException − if the current status is not STATUS_INIT,
or the status of the given connection is not
Connection.STATUS_CONNECTED.

See Also:
Acceptable Values

makeFilterParam

FilterParam makeFilterParam()

Create and returns a new filter parameter container.

Each parameter of the returned container has its value equal to default−value as described in
the corresponding FilterParam.getSomething description.

Returns:
the new filter parameter container.
null is returned when the current status is not STATUS_INIT.

◊

makeQuery

Query makeQuery(Connection connection,
QueryParam param,
QueryListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Create and returns a new query.

The current status of the returned query is STATUS_INIT.

At the return of this method the given QueryParam parameter container is bound.

Parameters:
connection − associated connection.
param − query parameter container.
listener − query listener.

Returns:
the new query.
null is never returned.

Throws:
NullPointerException − if some parameter is null.
IllegalArgumentException − if Param contains un−acceptable values,
or the given connection is not associated to this context.
IllegalStateException − if the current status is not STATUS_INIT,
or the status of the given connection is not
Connection.STATUS_CONNECTED.

See Also:
Acceptable Values

◊

Interface Context

80 Interface Context

makeQueryParam

QueryParam makeQueryParam()

Create and returns a new query parameter container.

Each parameter of the returned container has its value equal to default−value as described in
the corresponding QueryParam.getSomething description.

Returns:
the new query parameter container.
null is returned when the current status is not STATUS_INIT.

◊

makeSubscription

Subscription makeSubscription(Connection connection,
SubscriptionParam param,
SubscriptionListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Create and returns a new subscription.

The current status of the returned subscription is STATUS_INIT.

At the return of this method the given SubscriptionParam parameter container is bound.

Parameters:
connection − associated connection.
param − subscription parameter container.
listener − subscription listener.

Returns:
the new subscription.
null is never returned.

Throws:
NullPointerException − if some parameter is null.
IllegalArgumentException − if Param contains un−acceptable values,
or the given connection is not associated to this context.
IllegalStateException − if the current status is not STATUS_INIT,
or the status of the given connection is not
Connection.STATUS_CONNECTED.

See Also:
Acceptable Values

◊

makeSubscriptionParam

SubscriptionParam makeSubscriptionParam()

Create and returns a new subscription parameter container.

Each parameter of the returned container has its value equal to default−value as described in
the corresponding SubscriptionParam.getSomething description.

Returns:

◊

Interface Context

Interface Context 81

the new subscription parameter container.
null is returned when the current status is not STATUS_INIT.

makeTransaction

Transaction makeTransaction(Connection connection,
TransactionParam param,
TransactionListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Create and returns a new transaction.

The current status of the returned transaction is STATUS_INIT.

At the return of this method the given TransactionParam parameter container is bound.

Parameters:
connection − associated connection.
param − transaction parameter container.
listener − transaction listener.

Returns:
the new transaction.
null is never returned.

Throws:
NullPointerException − if some parameter is null.
IllegalArgumentException − if Param contains un−acceptable values,
or the given connection is not associated to this context.
IllegalStateException − if the current status is not STATUS_INIT,
or the status of the given connection is not
Connection.STATUS_CONNECTED.

See Also:
Acceptable Values

◊

makeTransactionParam

TransactionParam makeTransactionParam()

Create and returns a new transaction parameter container.

Each parameter of the returned container has its value equal to default−value as described in
the corresponding TransactionParam.getSomething description.

Returns:
the new transaction parameter container.
null is returned when the current status is not STATUS_INIT.

◊

makeEntityClassQuery

EntityClassQuery makeEntityClassQuery(Connection connection,
EntityClassQueryParam param,
EntityClassQueryListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

◊

Interface Context

82 Interface Context

Throws:
NullPointerException
IllegalArgumentException
IllegalStateException

makeEntityClassQueryParam

EntityClassQueryParam makeEntityClassQueryParam()

◊

makeMulticastConnection

MulticastConnection makeMulticastConnection(MulticastConnectionParam param,
MulticastConnectionListener listener)

 throws NullPointerException,
 IllegalArgumentException,
 IllegalStateException

Throws:
NullPointerException
IllegalArgumentException
IllegalStateException

◊

makeMulticastConnectionParam

MulticastConnectionParam makeMulticastConnectionParam()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface JFT

All Superinterfaces:
LifeCycle

public interface JFT
extends LifeCycle

Main basic library interface to use within JFT/API.
Use this interface to initialize, configure and start to use the library.

A singleton of this interface is available in the THIS constant.
Using this constant it's possible to access any functionality exposed by this library.

To start use this library read the JFT/Api Introduction or watch the data models (Package it.list.jft Data
Model and Package it.list.jft.event Data Model) or just watch a few Java example programs.

JFT Exceptions

Almost all the methods of this library does not throw any exceptions of any sort: they instead return
appropriate values to indicate any error condition found. There are very few exceptions to this policy:

the alone method addFieldByName() in the Mask interface,♦
all setSomething methods in Param sub−interfaces,♦

•

Interface Context

Interface Context 83

mailto:ftapi@list-group.com

all makeSomething methods in Context.♦
Even in this case the totality of thrown exceptions are unchecked (subclasses of RuntimeException), so
they do not need to be catched or declared in the throws clause of method signature.

The JFT library does not throws any checked exception.

JFT Other Details

See JFT Implementation Threads and JFT Synchronization for details on implementation threads and
synchronization.

JFT lifecycle

See Also:
JFT/Api Introduction, JFT Application Examples, LifeCycle, JFT Implementation Threads, JFT

Interface JFT

84 Interface JFT

Synchronization

Field Summary

Fields

Modifier and
Type

Field and Description

static int
MODE_MULTI_THREAD
Threading mode: multi−thread.

static int
MODE_NO_ENTITY_CLONING
Disable entity cloning in the library.

static int
STATUS_CONFIGURING
Lifecycle status: JFT initialized: ready to be configured and then started.

static int
STATUS_RUNNING
Lifecycle status: JFT started: ready to be used and then released.

static JFT
THIS
Reference to the JFT singleton.

static int
TRACE_LEVEL_DEBUG
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

static int
TRACE_LEVEL_ERROR
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

static int
TRACE_LEVEL_FATAL
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

static int
TRACE_LEVEL_INFO
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

static int
TRACE_LEVEL_TEST
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

static int
TRACE_LEVEL_WARN
Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN,
ERROR, FATAL.

Fields inherited from interface LifeCycle

RESULT_GENERIC_ERROR, RESULT_INVALID_STATUS, RESULT_OK,
STATUS_INIT, STATUS_RELEASED

◊

♦ •

Interface JFT

Interface JFT 85

Method Summary

Methods

Modifier and
Type

Method and Description

EntityClass
getEntityClass(int EntityClassID)
Returns the registered EntityClass corresponding to the given EntityClassID.

EntityClass
getEntityClass(String EntityClassName)
Returns the registered EntityClass corresponding to the given EntityClass
Name.

String
getLibraryVersion()
Returns the version of this library.

int
init(int mode)
Initialize the library (with a specific threading model) and start the
configuration phase.

boolean
isRegistered(int EntityClassID)
Returns the indication that a given EntityClass (identified by an
EntityClassID) has been registered.

Context
makeContext()
Create and returns a new context.

Mask
makeEmptyMask(int entityClassID)
Create and returns a new empty mask for a given Entity Class.

TimeStamp
makeTimeStamp(int dateTime, int prog)
Create and returns a new TimeStamp.

TransactionID
makeTransactionID(int clientID, int clientServiceID,
int businessServiceID, TimeStamp timeStamp)
Create and returns a new TransactionID.

int
register(EntityClass entityClass)
Register another EntityClass augmenting the number of the classes that
can be manipulated by the library.

int
register(EntityClass[] entityClass)
Like register(), this method register an array of EntityClass.

void
setExitOnListenerException(boolean enable)
Enable/Disable the automatically termination of the JVM when an exception is
thrown and not catch inside a Listener method.

void
setTrace(boolean enable)
Enable/Disable the library trace.

int
setTraceLevel(int traceLevel)
Set the mimun displayable level of the library trace.

int
setTraceMode(boolean autoFlush, File file)
Set a file tracer.

int
setTraceMode(boolean autoFlush, PrintWriter writer)
Set a printwriter (file, standard output/error, socketd, etc...) tracer.

Interface JFT

86 Interface JFT

int
setTraceMode(Tracer tracer)
Set a customer tracer.

int
start()
End the configuration phase and start to use the library.

void
trace(String module, int traceLevel, String message)
Trace a given message.

Methods inherited from interface LifeCycle

enumChilds, getStatus, release

◊

♦

Field Detail

THIS

static final JFT THIS

Reference to the JFT singleton.

◊

STATUS_CONFIGURING

static final int STATUS_CONFIGURING

Lifecycle status: JFT initialized: ready to be configured and then started.
This value may be returned by LifeCycle.getStatus().

Status Entry:
LifeCycle.STATUS_INIT init() ok STATUS_CONFIGURING.

Status Activities:
the JFT libray may be configured via the register() method.

Status Exit:
STATUS_CONFIGURINGstart() ok STATUS_RUNNING.

See Also:
JFT lifecycle, Constant Field Values

◊

STATUS_RUNNING

static final int STATUS_RUNNING

Lifecycle status: JFT started: ready to be used and then released.
This value may be returned by LifeCycle.getStatus().

Status Entry:
STATUS_CONFIGURINGstart() ok STATUS_RUNNING.

Status Activities:
the JFT library may be used via the makeContext() or makeTimeStamp() or
makeTransactionID() or makeEmptyMask() methods.

Status Exit:
STATUS_RUNNINGLifeCycle.release()
LifeCycle.STATUS_RELEASED.

See Also:

◊

♦ •

Interface JFT

Interface JFT 87

JFT lifecycle, Constant Field Values
TRACE_LEVEL_DEBUG

static final int TRACE_LEVEL_DEBUG

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR,
FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:
Constant Field Values

◊

TRACE_LEVEL_TEST

static final int TRACE_LEVEL_TEST

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR,
FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:
Constant Field Values

◊

TRACE_LEVEL_INFO

static final int TRACE_LEVEL_INFO

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR,
FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:
Constant Field Values

◊

TRACE_LEVEL_WARN

static final int TRACE_LEVEL_WARN

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:
Constant Field Values

◊

TRACE_LEVEL_ERROR

static final int TRACE_LEVEL_ERROR

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:

◊

Interface JFT

88 Interface JFT

Constant Field Values
TRACE_LEVEL_FATAL

static final int TRACE_LEVEL_FATAL

Trace level: messages in bold are traced: DEBUG, TEST, INFO, WARN, ERROR, FATAL.

This value may be used as argument of setTraceLevel(int).

See Also:
Constant Field Values

◊

MODE_MULTI_THREAD

static final int MODE_MULTI_THREAD

Threading mode: multi−thread.

Details on threads and synchronization are available in JFT Implementation Threads

This value may be used as argument of init(int).

See Also:
JFT Implementation Threads, Constant Field Values

◊

MODE_NO_ENTITY_CLONING

static final int MODE_NO_ENTITY_CLONING

Disable entity cloning in the library.

Usually library functions return a safe copy of an entity in its method (especially in the
callback events). For this reason users can without any problems safely modify them or store
their reference if needed. In case of heavy subscription load, it is possibile to improve the
library performance using this flag; in this case entities coming from callback events are valid
inside the callback event context, whereas out of that context their value can be changed using
library calls (however you can clone them in the event if you want to save their value)

This value may be used as argument of init(int).

See Also:
Constant Field Values

◊

Method Detail

getLibraryVersion

String getLibraryVersion()

Returns the version of this library.

Returns:
the version of this library.
null is never returned.

◊

♦

Interface JFT

Interface JFT 89

setExitOnListenerException

void setExitOnListenerException(boolean enable)

Enable/Disable the automatically termination of the JVM when an exception is thrown and
not catch inside a Listener method.

By default (if this method is never invoked) the automatically invocation of
System.exit(0) is enabled.

Parameters:
enable − true or false to enable or disable this switch.

◊

setTrace

void setTrace(boolean enable)

Enable/Disable the library trace.

By default (if this method is never invoked) the trace is disabled.

Parameters:
enable − true or false to enable or disable the trace.

◊

setTraceLevel

int setTraceLevel(int traceLevel)

Set the mimun displayable level of the library trace.

Available trace level are: TRACE_LEVEL_DEBUG, TRACE_LEVEL_TEST,
TRACE_LEVEL_INFO, TRACE_LEVEL_WARN, TRACE_LEVEL_ERROR and
TRACE_LEVEL_FATAL.

By default (if this method is never invoked) the trace level is TRACE_LEVEL_WARN.

Parameters:
traceLevel − one of the TRACE_LEVEL_ constants.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the
traceLevel parameter is bad).

♦

◊

setTraceMode

int setTraceMode(Tracer tracer)

Set a customer tracer.

The current customer tracer (the last set by this method or none if this method was never
invoked) is replaced with the given customer tracer.

A customer tracer is described by the Tracer interface in which the Tracer.onTrace()
method is automatically invoked whenever the trace is enabled and the current trace−message
has a level greater or equal than the current trace level.

◊

Interface JFT

90 Interface JFT

Parameters:
tracer − customer tracer (it may be null)

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise. is null).♦

setTraceMode

int setTraceMode(boolean autoFlush,
 File file)

Set a file tracer.

The current file tracer (the last set by this method or none if this method was never invoked)
is replaced with the given file tracer.

If the trace is enabled a file tracer allow to trace in a file all trace−messages that have a level
greater or equal than the current trace level.

Parameters:
autoFlush − true/false to enable/disable flush after every trace message.
file − file (it may be null) on which the trace messages are appended.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the file
parameter refers an unexisting/unaccessible file).

♦

◊

setTraceMode

int setTraceMode(boolean autoFlush,
 PrintWriter writer)

Set a printwriter (file, standard output/error, socketd, etc...) tracer.

The current printwriter tracer (the last set by this method or none if this method was never
invoked) is replaced with the given printwriter tracer.

If the trace is enabled a printwriter tracer allow to trace in a PrintWriter all trace−messages
that have a level greater or equal than the current trace level.

Parameters:
autoFlush − true/false to enable/disable flush after every trace message.
writer − PrintWriter (it may be null) on which the trace messages are appended.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the writer
parameter refers an unexisting/unaccessible writer).

♦

◊

trace

void trace(String module,
 int traceLevel,
 String message)

Trace a given message.

◊

Interface JFT

Interface JFT 91

http://java.sun.com/j2se/1.4.1/docs/api/java/io/File.html#canWrite()

The message will appear on the requested trace, depending on setting controlled by
setTrace(boolean), setTraceLevel() and the required setTraceMode().

Parameters:
module − caller module name.
traceLevel − one of the TRACE_LEVEL_ constants.
message − not newline−terminated message to be traced.

init

int init(int mode)

Initialize the library (with a specific threading model) and start the configuration phase.

This method must be called only when current status is LifeCycle.STATUS_INIT, i.e.
this method must be called before any other methods invocations (except for
getLibraryVersion() and all trace methods that can be called at every time).

If this method invocation completed successfully, the current status changed to
STATUS_CONFIGURING, otherwise it remains unchanged.

Parameters:
mode − threading mode (only MODE_MULTI_THREAD currently allowed).

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
LifeCycle.STATUS_INIT,

♦

LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the mode
parameter is not MODE_MULTI_THREAD).

♦

◊

register

int register(EntityClass entityClass)

Register another EntityClass augmenting the number of the classes that can be
manipulated by the library.

This method must be called only when current status is STATUS_CONFIGURING, i.e. in the
configuration phase between the init(int) and start() invocations.

This method must be called for each market or service EntityClass which is referenced or
used in the rest of the application. To facilitate this the FastTrack libraries are equipped with
several market/service libraries each containing the Java EntityClasses of the
market/service structures.

Parameters:
entityClass − EntityClass to be registered.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONFIGURING,

♦

LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. the
entityClass parameter does not refer a valid EntityClass).

♦

◊

Interface JFT

92 Interface JFT

register

int register(EntityClass[] entityClass)

Like register(), this method register an array of EntityClass.
Parameters:

entityClass − Array of EntityClass to be registered.
Returns:

LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONFIGURING,

♦

LifeCycle.RESULT_GENERIC_ERROR otherwise (e.g. some
entityClass does not refer a valid EntityClass).

♦

◊

isRegistered

boolean isRegistered(int EntityClassID)

Returns the indication that a given EntityClass (identified by an EntityClassID) has been
registered.

Parameters:
EntityClassID − ID of the EntityClass to be checked.

Returns:
the indication that a given EntityClass (identified by an EntityClassID) has been
registered.
false is returned when the current status is LifeCycle.STATUS_INIT.

◊

getEntityClass

EntityClass getEntityClass(int EntityClassID)

Returns the registered EntityClass corresponding to the given EntityClassID.

Parameters:
EntityClassID − ID of the EntityClass to be retrieved.

Returns:
the registered EntityClass corresponding to the given EntityClassID.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

◊

getEntityClass

EntityClass getEntityClass(String EntityClassName)

Returns the registered EntityClass corresponding to the given EntityClass Name.

Parameters:
EntityClassName − The name of the EntityClass to be retrieved.

Returns:
the registered EntityClass corresponding to the given EntityClass Name.
null is returned when the current status is LifeCycle.STATUS_INIT,
or when the given EntityClassID is not registered.

◊

Interface JFT

Interface JFT 93

start

int start()

End the configuration phase and start to use the library.

This method must be called only when current status is STATUS_CONFIGURING after all
the register(it.list.jft.EntityClass) invocations.

If this method invocation completed successfully, the current status changed to
STATUS_RUNNING. otherwise it remains unchanged.

Returns:
LifeCycle.RESULT_OK if the operation completed successfully,♦
LifeCycle.RESULT_INVALID_STATUS if the current status is not
STATUS_CONFIGURING.

♦

◊

makeEmptyMask

Mask makeEmptyMask(int entityClassID)

Create and returns a new empty mask for a given Entity Class.

A mask may be used in subscriptions (SubscriptionParam.setMask()) or
transactions (TransactionParam.setMask()).

This method must be called only when current status is STATUS_RUNNING, i.e. after the
start() invocation.

Parameters:
entityClassID − Entity Class ID of the market class.

Returns:
the new empty mask.
null is returned when the current status is not STATUS_RUNNING,
or when the parameter entityClassID is wrong.

◊

makeContext

Context makeContext()

Create and returns a new context.

A context is used to interact with one or more FastTrack servers.

This method must be called only when current status is STATUS_RUNNING, i.e. after the
start() invocation.

Returns:
the new context.
null is returned when the current status is not STATUS_RUNNING.

◊

makeTimeStamp

TimeStamp makeTimeStamp(int dateTime,
 int prog)

◊

Interface JFT

94 Interface JFT

Create and returns a new TimeStamp.

This convenience method may be used to re−create a timestamp previously saved as 2 ints
returned by invocation of TimeStamp.getDateTime() and
TimeStamp.getProg().

This method must be called only when current status is STATUS_RUNNING, i.e. after the
start() invocation.

Parameters:
dateTime − saved value returned by a TimeStamp.getDateTime()
invocation.
prog − saved value returned by a TimeStamp.getProg() invocation.

Returns:
the new TimeStamp.
null is returned when the current status is not STATUS_RUNNING,
or when some parameter is < 0.

makeTransactionID

TransactionID makeTransactionID(int clientID,
 int clientServiceID,
 int businessServiceID,

TimeStamp timeStamp)

Create and returns a new TransactionID.

This convenience method may be used to re−create a TransactionID previously saved as 5
ints returned by invocations of TransactionID.getClientID(),
TransactionID.getClientServiceID(),
TransactionID.getBusinessServiceID() and
TransactionID.getTimeStamp().

This method must be called only when current status is STATUS_RUNNING, i.e. after the
start() invocation.

Parameters:
clientID − saved value returned by a TransactionID.getClientID()
invocation.
clientServiceID − saved value returned by a
TransactionID.getClientServiceID() invocation.
businessServiceID − saved value returned by a
TransactionID.getBusinessServiceID() invocation.
timeStamp − saved value returned by a TransactionID.getTimeStamp()
invocation.

Returns:
the new TransactionID.
null is returned when the current status is not STATUS_RUNNING,
or when the timeStamp parameter is null.

See Also:
makeTimeStamp(int, int)

◊

Submit a bug or feature to FT\API Programming Support

Interface JFT

Interface JFT 95

mailto:ftapi@list-group.com

JavaScript is disabled on your browser.
it.list.jft

Interface Mask

public interface Mask

A set of fields of a EntityClass.

A mask may be used in subscriptions (SubscriptionParam.setMask()) or transactions
(TransactionParam.setMask()).

Empty masks are created by JFT.makeEmptyMask() and then filled with addFieldByName().

•

Method Summary

Methods

Modifier and Type Method and Description

void
addFieldByName(String fieldName)
Add a specific field to the mask.

int
getEntityClassID()
Returns the ID of the EntityClass related to this mask.

byte[] getMask()

boolean
isBound()
Returns the bound−indication of this mask.

void
reset()
Reset this mask to an emtpy mask.

void setMask(byte[] mask)

♦ •

Method Detail

reset

void reset()
 throws IllegalStateException

Reset this mask to an emtpy mask.

Throws:
IllegalStateException − if this mask is bound.

◊

♦ •

Interface Mask

96 Interface Mask

addFieldByName

void addFieldByName(String fieldName)
 throws IllegalArgumentException,
 IllegalStateException

Add a specific field to the mask.

A masked field of this EntityClass related to this mask may be:

1. a String field of this EntityClass.⋅
2. a primitive (i.e. boolean or numeric types) field of this EntityClass.⋅
3. a component of an array, of primitive types (but here byte, boolean and char are
not allowed!), field of this EntityClass.
In this case the component is identified by an unsigned integer between square
barckets [].

⋅

4. a masked field (recursive definition!) of a EntityClass reference field of this
EntityClass.
In this case the masked field is identified by the dot notation "field.field".

⋅

5. a masked field (recursive definition!) of an array, of EntityClass references, field of
this EntityClass.
In this case the component is identified by an unsigned integer between square
barckets [].

⋅

Spaces (blank, tab, carriage return, etc...) are not allowed inside a masked field representation.

As an example please consider the following two EntityClasses:

class TypeA implements EntityClass {
 int n;
 int v[10];
 String s;
}
class TypeB implements EntityClass {
 TypeA a[10];
 TypeA x;
 double d[10];
 char c[10];
 byte b;
 String ss;
}

Here a list of valid masked fields of TypeB:

Rule 1: "ss"⋅
Rule 2: "b"⋅
Rule 3: "d[2]"⋅
Rule 4: "x.n", "x.v[3]", "x.s"⋅
Rule 5: "a[8].n", "a[0].v[9]", "a[5].s"⋅

Here a list of invalid masked fields of TypeB:
Rule 1: "s s", "t"⋅
Rule 2: "x"⋅
Rule 3: "c[2]", "d[+2]", "d[20]", "d[2", "d[2]", "ss[3]"⋅
Rule 4: "a.n", "x.y"⋅

Interface Mask

Interface Mask 97

Rule 5: "a[8]. n", "a[8]", "a[0].v", "a[5].s[3]"⋅

Parameters:
fieldName − field of the related EntityClass,

Throws:
IllegalArgumentException − if fieldName is null or it does not exists in
the related EntityClass.
IllegalStateException − if this mask is bound.

◊

getEntityClassID

int getEntityClassID()

Returns the ID of the EntityClass related to this mask.

The returned value is the same entityClassID used as parameter of
JFT.makeEmptyMask(int) invocation that created this mask.

Returns:
the ID of the EntityClass related to this mask.

◊

isBound

boolean isBound()

Returns the bound−indication of this mask.

A mask is bound if it was used as creation parameter in a
SubscriptionParam.setMask() or in a TransactionParam.setMask().

reset() and addFieldByName() methods invocation on bound masks will throw a
IllegalStateException.

Returns:
the bound−indication of this mask.

◊

setMask

void setMask(byte[] mask)
 throws IllegalArgumentException,
 IllegalStateException

Throws:
IllegalArgumentException
IllegalStateException

◊

getMask

byte[] getMask()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Mask

98 Interface Mask

mailto:ftapi@list-group.com

Interface Param

All Known Subinterfaces:
ConnectionParam, EntityClassQueryParam, FilterParam, MulticastConnectionParam, QueryParam,
SubscriptionParam, TransactionParam

public interface Param

Super−interface common to all parameter container of CommunicationLifeCycle objects.

Bound

The 5 classes (ConnectionParam, FilterParam, QueryParam, SubscriptionParam and
TransactionParam) that implement this Param interfaces share the concept of being bound.

Every time a parameter container (i.e. an object of the previous 5 classes) is created it is not bound.

When such parameter container is not bound then a specific parameter may be set via a setSomething
method (e.g. a setEntityClassID() may be issued on a SubscriptionParam).

Once a parameter container is given as creation parameter of a makeSomething method of Context (e.g.
Context.makeSubscription()) it becomes bound:

it can be shared with others CommunicationLifeCycle object,
i.e. it can be re−used in another makeSomething method of Context;

♦

but it cannot never change:
all setSomething method will throw a IllegalStateException in this case.

♦

Acceptable Values

Each single parameter (of each class that implements this Param interface) has the concept of being
acceptable.

E.g. the EntityClassID of a SubscriptionParam is acceptable only if it has been registered.

In this documentation each description of each single parameter has a section, titled "Acceptable values:",
that describes the acceptable values for the corresponding parameter using a Java boolean expression that
must be satisfied, i.e. its computed value at run−time must be true.

E.g. a value for the EntityClassID of a SubscriptionParam is acceptable only if:
 JFT.THIS.isRegistered(getEntityClassID())
 // i.e. acceptable only if registered

These run−time checks (to see if a parameter has an acceptable value) are not executed when the parameter is
set (the various setSomething methods of sub−interface of Param), but instead when it's given to a
specific CommunicationLifeCycle object creation (the various makeSomething methods of
Context).

E.g. the check to see if the value of the EntityClassID of a SubscriptionParam is acceptable is
not made inside:

•

Interface Param

Interface Param 99

 mySubscrParam.setEntityClassID(myEntityClassID);
 // no check here
instead it's made inside:
 myContext.makeSubscription(myConnection, mySubscrParam,
mySubscrListener);
 // here all mySubscrParam parameters are checked !

Please note that when a check is made it regards all the parameters used by the specific operation and not only
the parameters explicitly set by the programmer.

E.g. inside a Subscription creation all the following parameters are checked to see if they
have acceptable values:
EntityClassID, EntityClassVersion, EntityClassTimeStamp, QueryType, EntityKey, Filter,
Flow and Mask.
If some has an unacceptable value (i.e. if some corresponding boolean expression valuated
false) then the operation fails and a IllegalArgumentException is thrown.

Method Summary

Methods

Modifier and Type Method and Description

boolean
isBound()
Returns the bound−indication of this parameter container.

♦ •

Method Detail

isBound

boolean isBound()

Returns the bound−indication of this parameter container.

A parameter container is bound if it was used as creation parameter in some
CommunicationLifeCycle object.

setSomething method invocation on bound objects will throw a
IllegalStateException.

Returns:
the bound−indication of this parameter container.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface Param

100 Interface Param

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/IllegalArgumentException.html
mailto:ftapi@list-group.com

Interface ConnectionParam

All Superinterfaces:
Param

public interface ConnectionParam
extends Param

Connection parameter container.

This container of connection parameters is created by Context.makeConnectionParam() and it is
used by Context.makeConnection().

See Also:
Connection Usage, Acceptable Values

•

Field Summary

Fields

Modifier and Type Field and Description

static int
CONN_TYPE_HTTP_TUNNEL
Connection−transport type−code: to use an HTTP tunnel, over
TCP/IP, as transport.

static int
CONN_TYPE_SOCKS4A
Connection−transport type−code: to use an Socks4A proxy.

static int
CONN_TYPE_SOCKS5
Connection−transport type−code: to use an Socks5 proxy.

static int
CONN_TYPE_TCP
Connection−transport type−code: to use TCP/IP as transport.

static int
USER_TYPE_AUTOTRADER
User−type code: to create a connection on which send data
variations (transaction).

static int
USER_TYPE_CONTROLLER
User−type code: to create a specialized (no more here described)
connection.

static int
USER_TYPE_MASTERSLAVE
User−type code: to create a specialized (no more here described)
connection.

static int
USER_TYPE_MONITOR
User−type code: to create a connection on which request data
(subscriptions and/or queries).

static int USER_TYPE_TRADER
User−type code: to create a connection on which send data

♦ •

Interface ConnectionParam

Interface ConnectionParam 101

variations (transaction).

static int
USER_TYPE_VIEW
User−type code: to create a connection on which request data
(subscriptions and queries).

Method Summary

Methods

Modifier and
Type

Method and Description

String
getAlternativeHost()
Returns the optional alternative requested server−host of a new connection.

int
getAlternativePort()
Returns the optional alternative requested server−port of a new connection.

int[]
getApplRevision()
Returns the client version for the new connection.

int
getApplSignature()
Returns the client signature for the new connection.

File
getAuthFile()
Returns the File that contains an authorization key for the new connection.

String
getAuthKey()
Returns the authorization key for the new connection.

String
getCharSet()
Returns the String that represents the charset used to code/decode the strings on
the new connection.

int
getClientID()
Returns the ClientID for the new connection.

boolean
getCompression()
Returns the requested indication about a compressed transmission for a new
connection.

int[]
getConnType()
Returns the array of connection−transport code of a new connection.

String
getHost()
Returns the requested server−host of a new connection.

String
getPassword()
Returns the requested user−password of a new connection.

int
getPort()
Returns the requested server−port of a new connection.

String
getProxyHost()
Returns the optional requested proxy−host of a new connection.

int
getProxyPort()
Returns the optional requested proxy−port of a new connection.

♦

Interface ConnectionParam

102 Interface ConnectionParam

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

String
getProxyUserName()
Returns the optional requested proxy−username of a new connection.

String
getService()
Returns the optional market/service name to which the new connection must talk.

boolean
getTcpNoDelay()
Tests if TCP_NODELAY is enabled.

String
getUserName()
Returns the requested user−name of a new connection.

int
getUserType()
Returns the user−type code of a new connection.

void
setAlternativeHost(String alternativeHost)
Set/replace the optional alternative requested server−host of a new connection.

void
setAlternativePort(int alternativePort)
Set/replace the optional alternative requested server−port of a new connection.

void
setApplRevision(int[] applRevision)
Set/replace the client version for the new connection.

void
setApplSignature(int applSignature)
Set/replace the client signature for the new connection.

void
setAuthFile(File file)
Set/replace the File that contains an authorization key for the new connection.

void
setAuthKey(String key)
Set/replace the authorization key for the new connection.

void
setCharSet(String charSet)
Set/replace the String that represents the charset used to code/decode the strings
on the new connection.

void
setClientID(int clientID)
Set/replace the ClientID for the new connection.

void
setCompression(boolean enable)
Set/replace the requested indication about a compressed transmission for a new
connection.

void
setConnType(int connType)
Set/replace the connection−transport code of a new connection.

void
setConnType(int[] connType)
Set/replace the array of connection−transport code to try for a new connection.

void
setHost(String host)
Set/replace the requested server−host of a new connection.

void
setPassword(String password)
Set/replace the requested user−password of a new connection.

void
setPort(int port)
Set/replace the requested server−port of a new connection.

void
setProxyHost(String proxyHost)
Set/replace the optional requested proxy−host of a new connection.

void setProxyPassword(String proxyPassword)

Interface ConnectionParam

Interface ConnectionParam 103

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

Set/replace the optional requested proxy−password of a new connection.

void
setProxyPort(int proxyPort)
Set/replace the optional requested proxy−port of a new connection.

void
setProxyUserName(String proxyUserName)
Set/replace the optional requested proxy−username of a new connection.

void
setService(String service)
Set/replace the optional market/service name to which the new connection must
talk.

void
setTcpNoDelay(boolean noDelay)
Set the TCP_NODELAY setting.

void
setUserName(String userName)
Set/replace the requested user−name of a new connection.

void
setUserType(int userType)
Set/replace the user−type code of a new connection.

Methods inherited from interface Param

isBound

◊

Field Detail

USER_TYPE_TRADER

static final int USER_TYPE_TRADER

User−type code: to create a connection on which send data variations (transaction).

This value may be set with setUserType(int) and retrieved by getUserType().

This and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

◊

USER_TYPE_AUTOTRADER

static final int USER_TYPE_AUTOTRADER

User−type code: to create a connection on which send data variations (transaction).

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

◊

♦ •

Interface ConnectionParam

104 Interface ConnectionParam

USER_TYPE_MONITOR

static final int USER_TYPE_MONITOR

User−type code: to create a connection on which request data (subscriptions and/or queries).

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

◊

USER_TYPE_VIEW

static final int USER_TYPE_VIEW

User−type code: to create a connection on which request data (subscriptions and queries).

This value may be set with setUserType(int) and retrieved by getUserType().

This and USER_TYPE_TRADER values are the most commonly used values.

See Also:
Constant Field Values

◊

USER_TYPE_CONTROLLER

static final int USER_TYPE_CONTROLLER

User−type code: to create a specialized (no more here described) connection.

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

◊

USER_TYPE_MASTERSLAVE

static final int USER_TYPE_MASTERSLAVE

User−type code: to create a specialized (no more here described) connection.

This value may be set with setUserType(int) and retrieved by getUserType().

USER_TYPE_TRADER and USER_TYPE_VIEW values are the most commonly used values.

See Also:
Constant Field Values

◊

CONN_TYPE_TCP

static final int CONN_TYPE_TCP

Connection−transport type−code: to use TCP/IP as transport.

◊

Interface ConnectionParam

Interface ConnectionParam 105

This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

CONN_TYPE_HTTP_TUNNEL

static final int CONN_TYPE_HTTP_TUNNEL

Connection−transport type−code: to use an HTTP tunnel, over TCP/IP, as transport.

This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

◊

CONN_TYPE_SOCKS4A

static final int CONN_TYPE_SOCKS4A

Connection−transport type−code: to use an Socks4A proxy.

This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

◊

CONN_TYPE_SOCKS5

static final int CONN_TYPE_SOCKS5

Connection−transport type−code: to use an Socks5 proxy.

This value may be set with setConnType(int) and retrieved by getConnType().

See Also:
Constant Field Values

◊

Method Detail

getHost

String getHost()

Returns the requested server−host of a new connection.

The pair given by this value together with getPort() describe the server to which the
client must talk.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getHost() != null &getHost().length > 0

◊

♦

Interface ConnectionParam

106 Interface ConnectionParam

Returns:
the requested server−host of a new connection.

See Also:
who sets this value, if you want to use YAS service to
find the less loaded service

getPort

int getPort()

Returns the requested server−port of a new connection.

The pair given by getHost() together with this value describe the server to which the
client must talk.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getPort() > 0

Returns:
the requested server−port of a new connection.

See Also:
who sets this value

◊

getAlternativeHost

String getAlternativeHost()

Returns the optional alternative requested server−host of a new connection.

The optional pair given by this value together with getAlternativePort() describe
another server to which the client must talk in the case the first attempt to the principal server
(pair getHost() together with getPort()) failed.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getAlternativeHost() == null
|| getAlternativeHost().length > 0 &getAlternativePort()
> 0

Returns:
the optional alternative requested server−host of a new connection.

See Also:
who sets this value

◊

getAlternativePort

int getAlternativePort()

Returns the optional alternative requested server−port of a new connection.

◊

Interface ConnectionParam

Interface ConnectionParam 107

The optional pair given by getAlternativeHost() together with this value describe
another server to which the client must talk in the case the first attempt to the principal server
(pair getHost() together with getPort()) failed.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getAlternativePort == 0
|| getAlternativePort() > 0 &getAlternativeHost() != null
&getAlternativeHost().length > 0

Returns:
the optional alternative requested server−port of a new connection.

See Also:
who sets this value

getConnType

int[] getConnType()

Returns the array of connection−transport code of a new connection.

The connection−transport code of a connection describe the transport used on that connection.
Possible values are:

CONN_TYPE_TCP to use the classic TCP/IP transport,⋅
CONN_TYPE_HTTP_TUNNEL to use a tunnel over HTTP transport, e.g. used in
applet inside HTML pages, or else used to bypass firewall,

⋅

CONN_TYPE_SOCKS4A to use a socks version 4a proxy,⋅
CONN_TYPE_SOCKS5 to use a socks version 5 proxy,⋅

In the two latter cases a pair getProxyHost() together with getProxyPort() must be
defined.

Used by:
Connection.open()

Default value:
CONN_TYPE_TCP

Acceptable values:
 getConnType() == CONN_TYPE_TCP
|| getConnType() == CONN_TYPE_HTTP_TUNNEL
|| getConnType() == CONN_TYPE_SOCKS4A
|| getConnType() == CONN_TYPE_SOCKS5

Returns:
the array of connection−transport code of a new connection.

See Also:
who sets this value

◊

getProxyHost

String getProxyHost()

Returns the optional requested proxy−host of a new connection.

◊

Interface ConnectionParam

108 Interface ConnectionParam

The optional pair given by this value together with getProxyPort() describe the proxy
used when a non−CONN_TYPE_TCP connection−transport is used.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getProxyHost() == null
|| getConnType() != CONN_TYPE_TCP &getProxyHost().length
> 0 &getProxyPort() > 0

Returns:
the optional requested proxy−host of a new connection.

See Also:
who sets this value

getProxyPort

int getProxyPort()

Returns the optional requested proxy−port of a new connection.

The optional pair given by getProxyHost() together with this value describe the proxy
used when a non−CONN_TYPE_TCP connection−transport is used.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getProxyPort == 0
|| getConnType() != CONN_TYPE_TCP &getProxyPort() > 0
&getProxyHost() != null &getProxyHost().length > 0

Returns:
the requested optional proxy−port of a new connection.

See Also:
who sets this value

◊

getProxyUserName

String getProxyUserName()

Returns the optional requested proxy−username of a new connection.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getProxyPort == 0
|| getConnType() != CONN_TYPE_TCP &getProxyPort() > 0
&getProxyHost() != null &getProxyHost().length > 0

Returns:
the requested optional proxy−username of a new connection.

See Also:

◊

Interface ConnectionParam

Interface ConnectionParam 109

who sets this value, who sets proxy−password
getCompression

boolean getCompression()

Returns the requested indication about a compressed transmission for a new connection.

A true values indicates that the transmission between the client and the server for this
connection must be compressed to save bandwidth.

Used by:
Connection.open()

Default value:
false

Acceptable values:
true // any value

Returns:
the requested indication about a compressed transmission for a new connection.

See Also:
who sets this value

◊

getCharSet

String getCharSet()

Returns the String that represents the charset used to code/decode the strings on the new
connection.

Every time a String goes from the client to server it's coded as a bytes−sequence using the
given charset. The behavior of this transformation when the string cannot be encoded in the
given charset is unspecified.

Every time a bytes−sequence goes from the server to the client it's decoded into a String using
the given charset. The behavior of this transformation when the given bytes are not valid in
the given charset is unspecified.

Please note that the default−value is determined at run−time as "ISO−8859−15" or else
"ISO−8859−1" depending on the Java platform on which the clients run:

"ISO−8859−15" (ISO−LATIN−9) is the first−choice (because it contains the
EURO−sign),

⋅

"ISO−8859−1" (ISO−LATIN−1) is the second choice (it does not contain the
EURO−sign, but it contains the "broken−bar", cedilla, acute−accent, "1/4", "1/2" and
"3/4" characters).

⋅

Please see ISO Latin 9 as compared with ISO Latin 1 to check all differences between the two
charsets.

Used by:
Connection.open()

Default value:
"ISO−8859−15" ISO−LATIN−9, if supported by the Java platform on which the
client runs,
"ISO−8859−1" ISO−LATIN−1, otherwise.

Acceptable values:

◊

Interface ConnectionParam

110 Interface ConnectionParam

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html
http://www.cs.tut.fi/~jkorpela/latin9.html

getCharSet() != null &getCharSet().length > 0
&new String("Hello World").getBytes(getCharSet()) != null
// i.e. no exception thrown

Returns:
the String that represents the Charset used to code/decode the strings on the new
connection.

See Also:
who sets this value

getService

String getService()

Returns the optional market/service name to which the new connection must talk.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getService() == null || getService.length > 0

Returns:
the optional market/service name to which the new connection must talk.

See Also:
who sets this value

◊

getUserType

int getUserType()

Returns the user−type code of a new connection.

The user−type code of a connection describe the activities that can be made on that
connection. Possible values are:

USER_TYPE_TRADER to send transactions on the connection,⋅
USER_TYPE_AUTOTRADER to send transactions on the connection,⋅
USER_TYPE_MONITOR to request data (subscription and/or queries) on the
connection,

⋅

USER_TYPE_VIEW to request data (subscription and/or queries) on the connection,⋅
USER_TYPE_CONTROLLER to use in a specially way (not described here) the
connection,

⋅

USER_TYPE_MASTERSLAVE to use in a specially way (not described here) the
connection.

⋅

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_USERTYPE failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
USER_TYPE_VIEW

Acceptable values:
 getUserType() == USER_TYPE_TRADER
|| getUserType() == USER_TYPE_AUTOTRADER

◊

Interface ConnectionParam

Interface ConnectionParam 111

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/String.html#getBytes(java.lang.String)

|| getUserType() == USER_TYPE_MONITOR
|| getUserType() == USER_TYPE_VIEW
|| getUserType() == USER_TYPE_CONTROLLER
|| getUserType() == USER_TYPE_MASTERSLAVE

Returns:
the user−type code of a new connection.

See Also:
who sets this value

getUserName

String getUserName()

Returns the requested user−name of a new connection.

The pair given by this value together with getPassword() describe the user associated to
the new connection.

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_USERNAME failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getUserName() != null &getUserName().length > 0

Returns:
the requested user−name of a new connection.

See Also:
who sets this value

◊

getPassword

String getPassword()

Returns the requested user−password of a new connection.

The pair given by getUserName() together with this value describe the user associated to
the new connection.

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_PASSWORD failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getPassword() != null &getPassword().length > 0

Returns:
the requested user−password of a new connection.

See Also:

◊

Interface ConnectionParam

112 Interface ConnectionParam

who sets this value
getClientID

int getClientID()

Returns the ClientID for the new connection.

The ClientID is a positive number that uniquely identifies the client.

This number is automatically used on TransactionIDs of all Transactions sent on
this connection.

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_CLIENTID failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getClientID() > 0

Returns:
the ClientID for the new connection.

See Also:
who sets this value

◊

getApplRevision

int[] getApplRevision()

Returns the client version for the new connection.

A version is always represented by a three−dimensional array; e.g. the version 2.0.3 is
represented by:
 int[] version = {2, 0, 3};

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_REVISION failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
{0,0,0}

Acceptable values:
getApplRevision() != null &getApplRevision().length == 3
&getApplRevision()[0] >= 0 &getApplRevision()[0] <= 255
&getApplRevision()[1] >= 0 &getApplRevision()[1] <= 255
&getApplRevision()[2] >= 0 &getApplRevision()[2] <= 255

Returns:
the client version for the new connection.

See Also:
who sets this value

◊

Interface ConnectionParam

Interface ConnectionParam 113

getApplSignature

int getApplSignature()

Returns the client signature for the new connection.

A signature is a non−negative number, that may be be required by the service (on the server)
that manages the market.

Used by:
Connection.open()

Default value:
0

Acceptable values:
getApplSignature() >= 0

Returns:
the client signature for the new connection.

See Also:
who sets this value

◊

getAuthKey

String getAuthKey()

Returns the authorization key for the new connection.

An authorization key (normally given by List S.p.a. in an authorization file is a key that allow
the client to open and use successfully a connection with a given server.

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_AUTH_KEY failure−code if it does not
comply with this value.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getAuthKey == null
|| getAuthFile() == null &getAuthKey().length > 0

Returns:
the authorization key for the new connection.

See Also:
who sets this value

◊

getAuthFile

File getAuthFile()

Returns the File that contains an authorization key for the new connection.

An authorization file, given by List S.p.a., contains a key that allow the client to open and use
successfully a connection with a given server.

◊

Interface ConnectionParam

114 Interface ConnectionParam

The server may subsequently returns a
ConnectionOpenEvent.RESULT_INVALID_AUTH_KEY failure−code if it does not
comply with the authorization key.

Used by:
Connection.open()

Default value:
null

Acceptable values:
getAuthFile() == null
|| getAuthKey() == null &getAuthFile().canRead()

Returns:
the File that contains an authorization key for the new connection.

See Also:
who sets this value

getTcpNoDelay

boolean getTcpNoDelay()

Tests if TCP_NODELAY is enabled.

A true values indicates that Nagle's algorithm is disabled.

Used by:
Connection.open()

Default value:
true

Acceptable values:
true // any value

Returns:
a boolean indicating whether or not TCP_NODELAY is enabled.

See Also:
who sets this value

◊

setHost

void setHost(String host)
 throws IllegalStateException

Set/replace the requested server−host of a new connection.

Parameters:
host − the requested server−host of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setPort

void setPort(int port)
 throws IllegalStateException

Set/replace the requested server−port of a new connection.

◊

Interface ConnectionParam

Interface ConnectionParam 115

http://java.sun.com/j2se/1.4.1/docs/api/java/io/File.html#canRead()

Parameters:
port − the requested server−port of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

setAlternativeHost

void setAlternativeHost(String alternativeHost)
 throws IllegalStateException

Set/replace the optional alternative requested server−host of a new connection.

Parameters:
alternativeHost − the optional alternative requested server−host of a new
connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setAlternativePort

void setAlternativePort(int alternativePort)
 throws IllegalStateException

Set/replace the optional alternative requested server−port of a new connection.

Parameters:
alternativePort − the optional alternative requested server−port of a new
connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setConnType

void setConnType(int connType)
 throws IllegalStateException

Set/replace the connection−transport code of a new connection.

Parameters:
connType − the connection−transport code of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setConnType

void setConnType(int[] connType)
 throws IllegalStateException

Set/replace the array of connection−transport code to try for a new connection.

◊

Interface ConnectionParam

116 Interface ConnectionParam

Parameters:
connType − array of the connection−transport code of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

setProxyHost

void setProxyHost(String proxyHost)
 throws IllegalStateException

Set/replace the optional requested proxy−host of a new connection.

Parameters:
proxyHost − the optional requested proxy−host of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setProxyPort

void setProxyPort(int proxyPort)
 throws IllegalStateException

Set/replace the optional requested proxy−port of a new connection.

Parameters:
proxyPort − the optional requested proxy−port of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setProxyUserName

void setProxyUserName(String proxyUserName)

Set/replace the optional requested proxy−username of a new connection.

Parameters:
proxyUserName − the optional requested proxy−username of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setProxyPassword

void setProxyPassword(String proxyPassword)

Set/replace the optional requested proxy−password of a new connection.

Parameters:
proxyPassword − the optional requested proxy−password of a new connection.

Throws:

◊

Interface ConnectionParam

Interface ConnectionParam 117

IllegalStateException − if this container is already bound.
setCompression

void setCompression(boolean enable)
 throws IllegalStateException

Set/replace the requested indication about a compressed transmission for a new connection.

Parameters:
enable − the requested indication about a compressed transmission for a new
connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setCharSet

void setCharSet(String charSet)
 throws IllegalStateException

Set/replace the String that represents the charset used to code/decode the strings on the new
connection.

Parameters:
charSet − the String that represents the charset used to code/decode the strings on
the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setService

void setService(String service)
 throws IllegalStateException

Set/replace the optional market/service name to which the new connection must talk.

If you set the service, you ask to YAS service (identified by host and port parameters) to
establish a connection with the less−loaded service.

You can specifies the double services connection required by ASIA platform using "|" (pipe)
character as the separator of the public and private service name, for example:
"PUBLMETAMARKET|PRIVMETAMARKET"

Parameters:
service − the optional market/service name to which the new connection must
talk.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Interface ConnectionParam

118 Interface ConnectionParam

http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.4.1/docs/api/java/nio/charset/Charset.html

setUserType

void setUserType(int userType)
 throws IllegalStateException

Set/replace the user−type code of a new connection.

Parameters:
userType − the user−type code of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setUserName

void setUserName(String userName)
 throws IllegalStateException

Set/replace the requested user−name of a new connection.

Parameters:
userName − the requested user−name of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setPassword

void setPassword(String password)
 throws IllegalStateException

Set/replace the requested user−password of a new connection.

Parameters:
password − the requested user−password of a new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setClientID

void setClientID(int clientID)
 throws IllegalStateException

Set/replace the ClientID for the new connection.

Parameters:
clientID − the ClientID for the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Interface ConnectionParam

Interface ConnectionParam 119

setApplRevision

void setApplRevision(int[] applRevision)
 throws IllegalStateException

Set/replace the client version for the new connection.

Parameters:
applRevision − the client version for the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setApplSignature

void setApplSignature(int applSignature)
 throws IllegalStateException

Set/replace the client signature for the new connection.

Parameters:
applSignature − the client signature for the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setAuthKey

void setAuthKey(String key)
 throws IllegalStateException

Set/replace the authorization key for the new connection.

Parameters:
key − the authorization key for the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setAuthFile

void setAuthFile(File file)
 throws IllegalStateException

Set/replace the File that contains an authorization key for the new connection.

Parameters:
file − the File that contains an authorization key for the new connection.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Interface ConnectionParam

120 Interface ConnectionParam

setTcpNoDelay

void setTcpNoDelay(boolean noDelay)
 throws IllegalStateException

Set the TCP_NODELAY setting. Setting this to true will disable Nagle's algorithm for TCP.
The default is true.

Parameters:
noDelay − false to disable TCP_NODELAY (enable Nagle's algorithm), true to
enable.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface EntityClassQueryParam

All Superinterfaces:
Param

public interface EntityClassQueryParam
extends Param

•

Method Summary

Methods

Modifier and Type Method and Description

int getEntityClassID()

String getEntityClassName()

void setEntityClassID(int entityClassID)

void setEntityClassName(String entityClassName)

Methods inherited from interface Param

isBound

◊

♦ •

Method Detail
♦ •

Interface ConnectionParam

Interface ConnectionParam 121

mailto:ftapi@list-group.com

getEntityClassID

int getEntityClassID()

◊

getEntityClassName

String getEntityClassName()

◊

setEntityClassID

void setEntityClassID(int entityClassID)
 throws IllegalStateException

Throws:
IllegalStateException

◊

setEntityClassName

void setEntityClassName(String entityClassName)
 throws IllegalStateException

Throws:
IllegalStateException

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface FilterParam

All Superinterfaces:
Param

public interface FilterParam
extends Param

Filter parameter container.

This container of filter parameters is created by Context.makeFilterParam() and it is used by
Context.makeFilter().

See Also:
Filter Usage, Acceptable Values

•

Method Summary

Methods

Modifier and Type Method and Description

String
getDefinition()
Returns the filter definition of the new filter.

int getEntityClassID()

♦ •

Interface EntityClassQueryParam

122 Interface EntityClassQueryParam

mailto:ftapi@list-group.com

Returns the EntityClassID of the associated EntityClass of the new filter.

int
getType()
Returns the filter type of the new filter.

void
setDefinition(String definition)
Set/replace the filter definition of the new filter.

void
setEntityClassID(int entityClassID)
Set/replace the associated EntityClass of the new filter.

void
setType(int type)
Set/replace the filter type of the new filter.

Methods inherited from interface Param

isBound

◊

Method Detail

getEntityClassID

int getEntityClassID()

Returns the EntityClassID of the associated EntityClass of the new filter.

The associated EntityClass is one of the 3 things that define a filter: (associated
EntityClass, filter type and the optional filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it
must be agreed between the client and the server.

The server may subsequently returns a
FilterCreateEvent.RESULT_INVALID_ENTITY_CLASS_ID failure−code if it
does not understand this value.

Used by:
Filter.create()

Default value:
0

Acceptable values:
JFT.THIS.isRegistered(getEntityClassID())

Returns:
the EntityClassID of the associated EntityClass of the new filter.

See Also:
who sets this value

◊

getType

int getType()

Returns the filter type of the new filter.

◊

♦ •

Interface FilterParam

Interface FilterParam 123

The filter type is one of the 3 things that define a filter: (associated EntityClass, filter type and
the optional filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it
must be agreed between the client and the server.

The server may subsequently returns a
FilterCreateEvent.RESULT_INVALID_FILTER_TYPE failure−code if it does not
understand this value.

Used by:
Filter.create()

Default value:
0

Acceptable values:
getType() >= 0

Returns:
the filter type of the new filter.

See Also:
who sets this value

getDefinition

String getDefinition()

Returns the filter definition of the new filter.

The filter definition is one of the 3 things that define a filter: (associated EntityClass, filter
type and the optional filter definition).

The precise meaning of these 3 things depends from the particular filter and, in general, it
must be agreed between the client and the server.

The server may subsequently returns a
FilterCreateEvent.RESULT_SYNTAX_ERROR or a
FilterCreateEvent.RESULT_INVALID_FILTER_LEN failure−code if it does not
understand this value or if this value is too long.

This value is optional: null and empty strings are acceptable values and, in this case, no
definition is given to the server.

Used by:
Filter.create()

Default value:
null.

Acceptable values:
true // any value

Returns:
the filter definition of the new filter.

See Also:
who sets this value

◊

Interface FilterParam

124 Interface FilterParam

setEntityClassID

void setEntityClassID(int entityClassID)
 throws IllegalStateException

Set/replace the associated EntityClass of the new filter.

Parameters:
entityClassID − EntityClassID of the associated EntityClass of the new
filter.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setType

void setType(int type)
 throws IllegalStateException

Set/replace the filter type of the new filter.

Parameters:
type − type of the new filter.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setDefinition

void setDefinition(String definition)
 throws IllegalStateException

Set/replace the filter definition of the new filter.

Parameters:
definition − filter definition of the new filter.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface MulticastConnectionParam

All Superinterfaces:
Param

public interface MulticastConnectionParam
extends Param

•

Interface FilterParam

Interface FilterParam 125

mailto:ftapi@list-group.com

Method Summary

Methods

Modifier and Type Method and Description

String getAddress()

String getCharSet()

int getPort()

void setAdress(String address)

void setCharSet(String charSet)

void setPort(int port)

Methods inherited from interface Param

isBound

◊

♦ •

Method Detail

getAddress

String getAddress()

◊

getPort

int getPort()

◊

getCharSet

String getCharSet()

◊

setAdress

void setAdress(String address)
 throws IllegalStateException

Throws:
IllegalStateException

◊

setPort

void setPort(int port)
 throws IllegalStateException

Throws:
IllegalStateException

◊

setCharSet

void setCharSet(String charSet)
 throws IllegalStateException

Throws:
IllegalStateException

◊

♦ •

Interface MulticastConnectionParam

126 Interface MulticastConnectionParam

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface QueryParam

All Superinterfaces:
Param

public interface QueryParam
extends Param

Query parameter container.

This container of query parameters is created by Context.makeQueryParam() and it is used by
Context.makeQuery().

See Also:
Query Usage, Acceptable Values

•

Method Summary

Methods

Modifier and Type Method and Description

int
getQueryID()
Returns the QueryID of the new query.

Entity
getQueryParameterEntity()
Returns the Query Parameter Entity of the new query.

void
setQueryID(int queryID)
Set/replace the QueryID of the new query.

void
setQueryParameterEntity(Entity queryParameter)
Set/replace the Query Parameter Entity of the new query.

Methods inherited from interface Param

isBound

◊

♦ •

Method Detail

getQueryID

int getQueryID()

Returns the QueryID of the new query.

◊

♦ •

Interface QueryParam

Interface QueryParam 127

mailto:ftapi@list-group.com

The QueryID identifies a given query into the server and so its value must be agreed between
the client and the server.

The server may subsequently returns
QueryCreateEvent.RESULT_WRONG_QUERY_ID failure−code if it does not
understand this value.

Used by:
Query.create()

Default value:
0

Acceptable values:
getQueryID() > 0

Returns:
the QueryID of the new query.

See Also:
who sets this value

getQueryParameterEntity

Entity getQueryParameterEntity()

Returns the Query Parameter Entity of the new query.

The Query Parameter Entity is the argument of the new query and it is given to the server and
so its meaning must be agreed between the client and the server.

The server may subsequently returns
QueryCreateEvent.RESULT_BAD_PARAMETERS failure−code if it does not
understand this value.

This value is optional: null is an acceptable value and, in this case, no argument is given to
the server.

Used by:
Query.create()

Default value:
null

Acceptable values:
true // any value

Returns:
the QueryID of the new query.

See Also:
who sets this value

◊

setQueryID

void setQueryID(int queryID)
 throws IllegalStateException

Set/replace the QueryID of the new query.

Parameters:
queryID − the QueryID of the new query.

Throws:

◊

Interface QueryParam

128 Interface QueryParam

IllegalStateException − if this container is already bound.
See Also:

default/current/acceptable values and their meaning
setQueryParameterEntity

void setQueryParameterEntity(Entity queryParameter)
 throws IllegalStateException

Set/replace the Query Parameter Entity of the new query.

Parameters:
queryParameter − the Query Parameter Entity of the new query.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface SubscriptionParam

All Superinterfaces:
Param

public interface SubscriptionParam
extends Param

Subscription parameter container.

This container of subscription parameters is created by Context.makeSubscriptionParam() and it is
used by Context.makeSubscription().

See Also:
Subscription Usage, Incremental Subscriptions, Partial Subscriptions, Acceptable Values

•

Field Summary

Fields

Modifier and Type Field and Description

static int
QUERY_TYPE_ALL
Query selection code: all entities.

static int
QUERY_TYPE_ON_TIME
Query selection code: only current entities values.

static int QUERY_TYPE_PAST

♦ •

Interface QueryParam

Interface QueryParam 129

mailto:ftapi@list-group.com

Query selection code: only past entities values and then idle
event.

static int
QUERY_TYPE_SET
Query selection code: all entities that match a partial
EntityKey.

static int
SUBSCRIBE_FLOW_ALL
Data transmission policy code: all variations sent by the
server.

static int
SUBSCRIBE_FLOW_LAST
Data transmission policy code: only the most recent snapshot
of each entity sent by the server.

static int
SUBSCRIBE_MASKED_FLOW_ALL
Data transmission policy code: all variations sent by the
server.

static int
SUBSCRIBE_MASKED_FLOW_LAST
Data transmission policy code: only the most recent snapshot
of each entity sent by the server.

Method Summary

Methods

Modifier and
Type

Method and Description

int
getEntityClassID()
Returns the requested EntityClassID of the EntityClass for the new
Subscription.

TimeStamp
getEntityClassTimeStamp()
Returns the EntityClass TimeStamp of the last past notification received by the
client.

int
getEntityClassVersion()
Returns the EntityClass version of the last past notification received by the
client.

EntityKey
getEntityKey()
Returns the partial EntityKey for the new subscription.

Filter
getFilter()
Returns the optional filter for the new subscription.

int
getFlow()
Returns the requested data transimission policy for the new subscription.

Mask
getMask()
Returns the optional mask for the new subscription.

int
getQueryType()
Returns the requested query selection criteria for the new subscription.

void setEntityClassID(int entityClassID)

♦

Interface SubscriptionParam

130 Interface SubscriptionParam

Set/replace the requested EntityClassID of the EntityClass for the new
Subscription.

void
setEntityClassTimeStamp(TimeStamp entityClassTimeStamp)
Set/replace the EntityClass TimeStamp of the last past notification received by
the client.

void
setEntityClassVersion(int entityClassVersion)
Set/replace the EntityClass version of the last past notification received by the
client.

void
setEntityKey(EntityKey entityKey)
Set/replace the partial EntityKey for the new subscription.

void
setFilter(Filter filter)
Set/replace the optional filter for the new subscription.

void
setFlow(int subscribeFlow)
Set/replace the requested data transimission policy for the new subscription.

void
setMask(Mask mask)
Set/replace the optional mask for the new subscription.

void
setQueryType(int queryType)
Set/replace the requested query selection criteria for the new subscription.

Methods inherited from interface Param

isBound

◊

Field Detail

SUBSCRIBE_FLOW_ALL

static final int SUBSCRIBE_FLOW_ALL

Data transmission policy code: all variations sent by the server.

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

◊

SUBSCRIBE_FLOW_LAST

static final int SUBSCRIBE_FLOW_LAST

Data transmission policy code: only the most recent snapshot of each entity sent by the server.

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

◊

♦ •

Interface SubscriptionParam

Interface SubscriptionParam 131

SUBSCRIBE_MASKED_FLOW_ALL

static final int SUBSCRIBE_MASKED_FLOW_ALL

Data transmission policy code: all variations sent by the server.

The transmission is optimized in a transparent way in a manner that only non−zero values are
sent. Please note that this is only an optimization hint and so it does not change the behaviour
of SubscriptionNotifyEvent.isMasked().

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

◊

SUBSCRIBE_MASKED_FLOW_LAST

static final int SUBSCRIBE_MASKED_FLOW_LAST

Data transmission policy code: only the most recent snapshot of each entity sent by the server.

The transmission is optimized in a transparent way in a manner that only non−zero values are
sent. Please note that this is only an optimization hint and so it does not change the behaviour
of SubscriptionNotifyEvent.isMasked().

This value may be set with setFlow(int) and retrieved by getFlow().

See Also:
Constant Field Values

◊

QUERY_TYPE_ALL

static final int QUERY_TYPE_ALL

Query selection code: all entities.

This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

◊

QUERY_TYPE_SET

static final int QUERY_TYPE_SET

Query selection code: all entities that match a partial EntityKey.

This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

◊

QUERY_TYPE_PAST

static final int QUERY_TYPE_PAST

Query selection code: only past entities values and then idle event.

◊

Interface SubscriptionParam

132 Interface SubscriptionParam

This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

QUERY_TYPE_ON_TIME

static final int QUERY_TYPE_ON_TIME

Query selection code: only current entities values.

This value may be set with setQueryType(int) and retrieved by getQueryType().

See Also:
Constant Field Values

◊

Method Detail

getEntityClassID

int getEntityClassID()

Returns the requested EntityClassID of the EntityClass for the new Subscription.

Used by:
Subscription.start()

Default value:
0

Acceptable values:
JFT.THIS.isRegistered(getEntityClassID())

Returns:
the requested EntityClassID of the EntityClass for the new Subscription.

See Also:
who sets this value

◊

getEntityClassVersion

int getEntityClassVersion()

Returns the EntityClass version of the last past notification received by the client.

See Incremental Subscriptions to understand how to use this value.

Used by:
Subscription.start()

Default value:
0

Acceptable values:
getEntityClassTimeStamp() == null ? value == 0 : value >
0

Returns:
the EntityClassID of the EntityClass on which the new Subscription is made.

See Also:
who sets this value, Incremental Subscriptions

◊

♦

Interface SubscriptionParam

Interface SubscriptionParam 133

getEntityClassTimeStamp

TimeStamp getEntityClassTimeStamp()

Returns the EntityClass TimeStamp of the last past notification received by the client.

See Incremental Subscriptions to understand how to use this value.

Used by:
Subscription.start()

Default value:
null

Acceptable values:
getEntityClassTimeStamp() == null
? getEntityClassVersion() == 0
: getEntityClassVersion() > 0

Returns:
the EntityClass TimeStamp of the last past notification received by the client.

See Also:
who sets this value, Incremental Subscriptions

◊

getQueryType

int getQueryType()

Returns the requested query selection criteria for the new subscription.

The requested query selection criteria may be one of:

QUERY_TYPE_ALL to request notifications for all entities:
past entities values,
and then idle event,
and then current values.

⋅

QUERY_TYPE_SET to request notifications for entities that match a partial
EntityKey:
past entities values,
and then idle event,
and then current values.

⋅

QUERY_TYPE_PAST to request notifications for only past entities values:
past entities values,
and then idle event.

⋅

QUERY_TYPE_ON_TIME to request notifications for only current entities values:
current values.

⋅

See Partial Subscriptions to understand how to use this value with partial subscriptions.

Used by:
Subscription.start()

Default value:
QUERY_TYPE_ALL

Acceptable values:
 getQueryType == QUERY_TYPE_ALL
|| getQueryType == QUERY_TYPE_SET
|| getQueryType == QUERY_TYPE_PAST
|| getQueryType == QUERY_TYPE_ON_TIME

◊

Interface SubscriptionParam

134 Interface SubscriptionParam

Returns:
the requested query selection criteria for the new subscription.

See Also:
who sets this value, Partial Subscriptions

getEntityKey

EntityKey getEntityKey()

Returns the partial EntityKey for the new subscription.

See Partial Subscriptions to understand how to use this value.

Used by:
Subscription.start()

Default value:
null

Acceptable values:
getQueryType() == QUERY_TYPE_SET
? (getEntityKey() != null &
getEntityKey().getEntityClassID() == getEntityClassID())
: getEntityKey() == null

Returns:
the partial EntityKey for the new subscription.

See Also:
who sets this value, Partial Subscriptions

◊

getFilter

Filter getFilter()

Returns the optional filter for the new subscription.

The filter is used to restrict (at the server level) the set of entities that will be notified.

Used by:
Subscription.start()

Default value:
null

Acceptable values:
getFilter() == null || getFilter().getStatus() ==
Filter.STATUS_CREATED &getQueryType() != QUERY_TYPE_SET

Returns:
the optional filter for the new subscription.

See Also:
who sets this value

◊

getFlow

int getFlow()

Returns the requested data transimission policy for the new subscription.

The requested data transimission policy may be one of:

◊

Interface SubscriptionParam

Interface SubscriptionParam 135

SUBSCRIBE_FLOW_LAST or SUBSCRIBE_MASKED_FLOW_LAST to request
only the most recent snapshot of each entity sent by the server,

⋅

SUBSCRIBE_FLOW_ALL or SUBSCRIBE_MASKED_FLOW_ALL to request all
variations sent by the server.

⋅

With the first two values the quantity of the data sent by the server is adapted to the reception
speed of the client. In practice, to each send operation, the server only sends the most recent
image of the entity, respect the previous send.

The latter two values require the server to send all the variations of the entities of the
subscribed class.

Basically SUBSCRIBE_*FLOW_LAST adapts the transmission resolution of the Server to the
reception band of the Client. SUBSCRIBE_*FLOW_ALL, on the other hand, requires each
intermediate variation of the Server DataBase to be submitted. Thus delays in the acquisition
by the Client may occur due to the increase in load of the buffer nside the communication
channel.

The SUBSCRIBE_MASKED_FLOW_LAST and SUBSCRIBE_MASKED_FLOW_ALL are
equivalent to the non−MASKED version, apart the fact the transmission is optimized in a
manner that only all non−zero values are sent from server to client. This optimization is
transparent to the client application, e.g. the behavior of
SubscriptionNotifyEvent.isMasked() does not change for MASKED or
non−MASKED flow values.

Used by:
Subscription.start()

Default value:
SUBSCRIBE_FLOW_ALL

Acceptable values:
getFlow() == SUBSCRIBE_FLOW_ALL || getFlow() ==
SUBSCRIBE_FLOW_LAST ||
getFlow() == SUBSCRIBE_MASKED_FLOW_ALL || getFlow() ==
SUBSCRIBE_MASKED_FLOW_LAST

Returns:
the requested data transimission policy for the new subscription.

See Also:
who sets this value

getMask

Mask getMask()

Returns the optional mask for the new subscription.

The mask is used to restrict (at the server level) the set of fields of entities that will be
notified.

If this value is not−null then the Entitity returned by
SubscriptionNotifyEvent.getEntity() will contain only the fields specified by
this mask.

Used by:
Subscription.start()

◊

Interface SubscriptionParam

136 Interface SubscriptionParam

Default value:
null

Acceptable values:
getMask() == null || getMask().getEntityClassID() ==
getEntityClassID()

Returns:
the optional mask for the new subscription.

See Also:
who sets this value

setEntityClassID

void setEntityClassID(int entityClassID)
 throws IllegalStateException

Set/replace the requested EntityClassID of the EntityClass for the new Subscription.

Parameters:
entityClassID − the requested EntityClassID of the EntityClass for the new
Subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setEntityClassVersion

void setEntityClassVersion(int entityClassVersion)
 throws IllegalStateException

Set/replace the EntityClass version of the last past notification received by the client.

Parameters:
entityClassVersion − the requested EntityClassID of the EntityClass for the
new Subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setEntityClassTimeStamp

void setEntityClassTimeStamp(TimeStamp entityClassTimeStamp)
 throws IllegalStateException

Set/replace the EntityClass TimeStamp of the last past notification received by the client.

Parameters:
entityClassTimeStamp − the EntityClass TimeStamp of the last past
notification received by the client.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Interface SubscriptionParam

Interface SubscriptionParam 137

setQueryType

void setQueryType(int queryType)
 throws IllegalStateException

Set/replace the requested query selection criteria for the new subscription.

Parameters:
queryType − the requested query selection criteria for the new subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setEntityKey

void setEntityKey(EntityKey entityKey)
 throws IllegalStateException

Set/replace the partial EntityKey for the new subscription.

Parameters:
entityKey − the partial EntityKey for the new subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setFilter

void setFilter(Filter filter)
 throws IllegalStateException

Set/replace the optional filter for the new subscription.

Parameters:
filter − the optional filter for the new subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setFlow

void setFlow(int subscribeFlow)
 throws IllegalStateException

Set/replace the requested data transimission policy for the new subscription.

Parameters:
subscribeFlow − the requested data transimission policy for the new
subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Interface SubscriptionParam

138 Interface SubscriptionParam

setMask

void setMask(Mask mask)
 throws IllegalStateException

Set/replace the optional mask for the new subscription.

Parameters:
mask − the optional mask for the new subscription.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface TransactionParam

All Superinterfaces:
Param

public interface TransactionParam
extends Param

Transaction parameter container.

This container of transaction parameters is created by Context.makeTransactionParam() and it is
used by Context.makeTransaction().

See Also:
Transaction Usage, Acceptable Values

•

Field Summary

Fields

Modifier and Type Field and Description

static int
ACTION_ENTITY_ADD
Action−code: request to add an entity on the server.

static int
ACTION_ENTITY_DEL
Action−code: request to logically remove an entity from the server.

static int
ACTION_ENTITY_KIL
Action−code: request to physically remove an entity from the server.

static int
ACTION_ENTITY_RWT
Action−code: request to replace an entity on the server.

♦ •

Interface SubscriptionParam

Interface SubscriptionParam 139

mailto:ftapi@list-group.com

Method Summary

Methods

Modifier and Type Method and Description

int
getAction()
Returns the requested action of a new transaction.

Entity
getEntity()
Returns the Entity of a new transaction.

int
getKeyID()
Returns the KeyID of a new transaction.

Mask
getMask()
Returns the optional mask of a new transaction.

TransactionID
getPendingTransactionID()
Returns the TransactionID of a past transaction.

boolean
getResEntityRequired()
Returns the indication that client want an Entity come back from the server.

void
setAction(int action)
Set/replace the requested action of a new transaction.

void
setEntity(Entity entity)
Set/replace the Entity of a new transaction.

void
setKeyID(int keyID)
Set/replace the KeyID of a new transaction.

void
setMask(Mask mask)
Set/replace the optional mask of a new transaction.

void
setPendingTransactionID(TransactionID transactionID)
Set/replace the TransactionID of a past transaction.

void
setResEntityRequired(boolean required)
Set/replace the indication that client want an Entity come back from the
server.

Methods inherited from interface Param

isBound

◊

♦

Field Detail

ACTION_ENTITY_ADD

static final int ACTION_ENTITY_ADD

Action−code: request to add an entity on the server.

This value may be set with setAction(int) and retrieved by getAction().

◊

♦ •

Interface TransactionParam

140 Interface TransactionParam

See Also:
Constant Field Values

ACTION_ENTITY_DEL

static final int ACTION_ENTITY_DEL

Action−code: request to logically remove an entity from the server.

This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

◊

ACTION_ENTITY_RWT

static final int ACTION_ENTITY_RWT

Action−code: request to replace an entity on the server.

This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

◊

ACTION_ENTITY_KIL

static final int ACTION_ENTITY_KIL

Action−code: request to physically remove an entity from the server.

This value may be set with setAction(int) and retrieved by getAction().

See Also:
Constant Field Values

◊

Method Detail

getAction

int getAction()

Returns the requested action of a new transaction.

The requested action may be one of:

ACTION_ENTITY_ADD to request to add an entity,⋅
ACTION_ENTITY_DEL to request to logically remove an entity,⋅
ACTION_ENTITY_RWT to request to rewrite an entity,⋅
ACTION_ENTITY_KIL to request to physically remove an entity.⋅

Used by:
Transaction.send()

Default value:
ACTION_ENTITY_ADD

◊

♦

Interface TransactionParam

Interface TransactionParam 141

Acceptable values:
 getAction() == ACTION_ENTITY_ADD
|| getAction() == ACTION_ENTITY_DEL
|| getAction() == ACTION_ENTITY_RWT
|| getAction() == ACTION_ENTITY_KIL

Returns:
the requested action of a new transaction.

See Also:
who sets this value

getKeyID

int getKeyID()

Returns the KeyID of a new transaction.

KeyID may be a primary key of the EntityClass of getEntity(), otherwise it is zero.
In the first case all the KeyID fields of the Entity must be properly filled.

Used by:
Transaction.send()

Default value:
0

Acceptable values:
getKeyID() == 0
|| getEntity() != null &getEntity().iskey(getKeyID(),
true)

Returns:
the KeyID of a new transaction.

See Also:
who sets this value

◊

getEntity

Entity getEntity()

Returns the Entity of a new transaction.

This is the Entity on which the action will be done.

The fields of this Entity that must be properly filled are:

all fields of the primary key described by getKeyID() (if getKeyID() is not
zero),

⋅

all fields of the mask described by getMask() (if getMask() is not null).⋅
All others fields of this Entity may be properly filled.

Used by:
Transaction.send()

Default value:
null

Acceptable values:
(getEntity() == null) != (getPendingTransactionID() ==
null)

Returns:

◊

Interface TransactionParam

142 Interface TransactionParam

the Entity of a new transaction.
See Also:

who sets this value
getMask

Mask getMask()

Returns the optional mask of a new transaction.

When this value is not null it describes which fields of the Entity
must be properly filled, because they will be sent to the
server.

This mask and the Entity must refer to the same EntityClass.

Used by:
Transaction.send()

Default value:
null

Acceptable values:
getMask() == null
|| getEntity() != null &getMask().getEntityClassID() ==
getEntity().getEntityClassID()

Returns:
the optional mask of a new transaction.

See Also:
who sets this value

◊

getResEntityRequired

boolean getResEntityRequired()

Returns the indication that client want an Entity come back from the server.

When this value is false the server will not send back an Entity to the client inside the
TransactionSendEvent and TransactionQueryEvent answers to the
Transaction.send() and Transaction.query() requests.

Otherwise, when this value is true the server can choose to put an Entity in the answer. In
this case the client may find a not−null returned value of
TransactionEvent.getEntity().

Used by:
Transaction.send() and Transaction.query()

Default value:
false

Acceptable values:
true // any value

Returns:
the indication that client want an Entity come back from the server.

See Also:
who sets this value

◊

Interface TransactionParam

Interface TransactionParam 143

getPendingTransactionID

TransactionID getPendingTransactionID()

Returns the TransactionID of a past transaction.

If this value is not null then Context.makeTransaction() will attempt to create a
Transaction that refers a past transaction with this TransactionID. In this case this
TransactionID must belong to the same Connection on which the Transaction will be created.

Used by:
Transaction.getTransactionID() and Transaction.query()

Default value:
null

Acceptable values:
(getPendingTransactionID() == null) != (getEntity() ==
null)

Returns:
the TransactionID of a past transaction.

See Also:
who sets this value

◊

setAction

void setAction(int action)
 throws IllegalStateException

Set/replace the requested action of a new transaction.

Parameters:
action − the requested action of a new transaction.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setKeyID

void setKeyID(int keyID)
 throws IllegalStateException

Set/replace the KeyID of a new transaction.

Parameters:
keyID − the KeyID of a new transaction.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setEntity

void setEntity(Entity entity)
 throws IllegalStateException

Set/replace the Entity of a new transaction.

◊

Interface TransactionParam

144 Interface TransactionParam

Parameters:
entity − the Entity of a new transaction.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

setMask

void setMask(Mask mask)
 throws IllegalStateException

Set/replace the optional mask of a new transaction.

Parameters:
mask − the optional mask of a new transaction.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setResEntityRequired

void setResEntityRequired(boolean required)
 throws IllegalStateException

Set/replace the indication that client want an Entity come back from the server.

Parameters:
required − the indication that client want an Entity come back from the server.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

setPendingTransactionID

void setPendingTransactionID(TransactionID transactionID)
 throws IllegalStateException

Set/replace the TransactionID of a past transaction.

Parameters:
transactionID − the TransactionID of a past transaction.

Throws:
IllegalStateException − if this container is already bound.

See Also:
default/current/acceptable values and their meaning

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface TransactionParam

Interface TransactionParam 145

mailto:ftapi@list-group.com

Interface TimeStamp

All Superinterfaces:
Serializable

public interface TimeStamp
extends Serializable

Interface that allows to represent a temporal indicator.

Each timestamp is represented by a couple of int:

the number of seconds since the standard base time known as "the epoch", namely January 1, 1970,
00:00:00 GMT.

♦

an incremental counter used to make the time stamps univocal when it was generated within the same
time unit.

♦

This interface extend the Serializable interface in order to save and then re−create TimeStamp objects.

In alternative a programmer may save the two ints returned by getDateTime() and getProg() and then
re−create the same TimeStamp object using the JFT.makeTimeStamp() with the 2 saved ints as
parameters.

•

Method Summary

Methods

Modifier and Type Method and Description

int
compareTo(TimeStamp timeStamp)
Compare two TimeStamps.

int
getDateTime()
Returns the number of seconds since January 1, 1970, 00:00:00 GMT.

int
getProg()
Returns the associated incremental counter.

♦ •

Method Detail

getDateTime

int getDateTime()

Returns the number of seconds since January 1, 1970, 00:00:00 GMT.

To obtain a Date object use:
 new Date(getDateTime()*1000L)

◊

♦ •

Interface TimeStamp

146 Interface TimeStamp

Returns:
the number of seconds since January 1, 1970, 00:00:00 GMT.

getProg

int getProg()

Returns the associated incremental counter.

The incremental counter is used to make the time stamp univocal when it was generated
within the same time unit.

Returns:
the associated incremental counter.

◊

compareTo

int compareTo(TimeStamp timeStamp)

Compare two TimeStamps.
Parameters:

timeStamp − the TimeStamp to be compared.
Returns:

a negative integer, zero, or a positive integer as this TimeStamp is less than, equal to,
or greater than the specified TimeStamp.

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface TransactionID

All Superinterfaces:
Serializable

public interface TransactionID
extends Serializable

Interface that allows to identify a Transaction.

Each Transaction is identified by a TransactionID made of:

the client from which the transaction was sent,
normally automatically generated by Transaction.send() with the value
ConnectionParam.getClientID() of the Connection on which the transaction was sent.

♦

the couple ClientServiceID and BusinessServiceID to which the transaction was sent,
normally automatically generated by Transaction.send() with the couple
ConnectionOpenEvent.getClientServiceID() and
ConnectionOpenEvent.getBusinessServiceID() returned on the Connection on which
the transaction was sent.

♦

the client TimeStamp of when the transaction was sent,
normally automatically generated by Transaction.send() with the sent time and an incremental
counter.

♦

•

Interface TimeStamp

Interface TimeStamp 147

mailto:ftapi@list-group.com

All TransactionIDs share a belongsTo() method to check their compatibility with a given Connection.

This interface extend the Serializable interface in order to save and then re−create TransactionID
objects.

In alternative a programmer may save the five ints returned by getClientID(),
getClientServiceID(), getBusinessServiceID(), getTimeStamp() and then re−create the
same TransactionID object using the JFT.makeTransactionID() with the 5 saved ints as parameters.

Method Summary

Methods

Modifier and Type Method and Description

boolean
belongsTo(Connection connection)
Returns the compatibility of this TransactionID with a given Connection.

int
getBusinessServiceID()
Returns the BusinessServiceID to which the transaction was sent.

int
getClientID()
Returns the ClientID from which the transaction was sent.

int
getClientServiceID()
Returns the ClientServiceID to which the transaction was sent.

TimeStamp
getTimeStamp()
Returns the TimeStamp of when the transaction was sent.

♦ •

Method Detail

belongsTo

boolean belongsTo(Connection connection)

Returns the compatibility of this TransactionID with a given Connection.

Only a compatible transactionID can be successfully queried using a
TransactionParam.setPendingTransactionID().

A TransactionID is compatible with a Connection if:

the TransactionID clientID is equals to the Connection ClientID,⋅
and the TransactionID ClientServiceID is equals to the Connection
ClientServiceID,

⋅

and the TransactionID BusinessServiceID is equals to the Connection
BusinessServiceID.

⋅

Parameters:
connection − Connection to be checked for compatibility

Returns:

◊

♦ •

Interface TransactionID

148 Interface TransactionID

the compatibility of this TransactionID with a given Connection.
false is returned when the connection parameter is null,
or when the connection status is not Connection.STATUS_CONNECTED.

See Also:
Transaction.query(),
TransactionParam.getPendingTransactionID()

getClientID

int getClientID()

Returns the ClientID from which the transaction was sent.

Returns:
the ClientID from which the transaction was sent.

See Also:
ConnectionParam.getClientID()

◊

getClientServiceID

int getClientServiceID()

Returns the ClientServiceID to which the transaction was sent.

Returns:
the ClientServiceID to which the transaction was sent.

See Also:
ConnectionOpenEvent.getClientServiceID()

◊

getBusinessServiceID

int getBusinessServiceID()

Returns the BusinessServiceID to which the transaction was sent.

Returns:
the BusinessServiceID to which the transaction was sent.

See Also:
ConnectionOpenEvent.getBusinessServiceID()

◊

getTimeStamp

TimeStamp getTimeStamp()

Returns the TimeStamp of when the transaction was sent.

Returns:
the TimeStamp of when the transaction was sent.
null is never returned.

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft

Interface TransactionID

Interface TransactionID 149

mailto:ftapi@list-group.com

Interface Tracer

public interface Tracer

Interface to be implemented in order to handle the library trace.

This interface may be bound to the library with the JFT.setTraceMode(Tracer) invocation.

•

Method Summary

Methods

Modifier and
Type

Method and Description

void
onTrace(Date timeStamp, String module, int traceLevel,
String message)
Called whenever a trace−message is availbale.

♦ •

Method Detail

onTrace

void onTrace(Date timeStamp,
 String module,
 int traceLevel,
 String message)

Called whenever a trace−message is availbale.

This method is automatically invoked when the trace is enabled and the trace−message level
traceLevel >= current trace level.

Parameters:
timeStamp − date.
module − JFT library module name.
traceLevel − trace−message level: one of availables levels described in
JFT.setTraceLevel().
message − trace−message.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.

Interface Tracer

150 Interface Tracer

mailto:ftapi@list-group.com

Package it.list.jft.event
Provides interfaces for dealing with different types of events and listeners.
See: Description

Interface Summary

Interface Description

ConnectionCloseEvent Server−answer to Connection.close().

ConnectionEvent Generic event related to the Connection Lifecycle.

ConnectionListener
Interface to be implemented in order to handle the
Connection Lifecycle.

ConnectionLostEvent
Event generated when the connection with the server
crashed or when the server choose to terminate the
connection.

ConnectionOpenEvent Server−answer to Connection.open().

EntityClassQueryEvent

EntityClassQueryListener

Event Super−interface common to all events.

FilterCreateEvent Server−answer to Filter.create().

FilterDestroyEvent Server−answer to Filter.destroy().

FilterEvent Generic event related to the Filter Lifecycle.

FilterListener
Interface to be implemented in order to handle the Filter
Lifecycle.

FilterSetEvent
Server−answer to
Filter.set(java.lang.String).

Listener Super−interface common to all listener interfaces.

MulticastConnectionEvent

MulticastConnectionListener

QueryCreateEvent Server−answer to Query.create().

QueryDestroyEvent Server−answer to Query.destroy().

QueryEvent Generic event related to the Query Lifecycle.

QueryListener
Interface to be implemented in order to handle the Query
Lifecycle.

QueryNotifyEvent
Event generated when a single entity (or the EOQ
indication) of a query result−set is available.

QueryRowsEvent Server−answer to Query.queryRows().

SubscriptionEvent Generic event related to the Subscription Lifecycle.

SubscriptionIdleEvent
Event generated when the flow of historical data is finished
and the start of actual data is starting.

•

Package it.list.jft.event 151

SubscriptionListener
Interface to be implemented in order to handle the
Subscription Lifecycle.

SubscriptionNotifyEvent
Event generated when an actual or historical data or a
server−answer to Subscription.refreshEntity()
is available.

SubscriptionStartEvent Server−answer to Subscription.start().

SubscriptionStopEvent Server−answer to Subscription.stop().

TransactionEvent Generic event related to the Transaction Lifecycle.

TransactionListener
Interface to be implemented in order to handle the
Transaction Lifecycle.

TransactionQueryEvent Server−answer to Transaction.query().

TransactionSendEvent Server−answer to Transaction.send().

Package it.list.jft.event Description

Provides interfaces for dealing with different types of events and listeners.

Implementation of Listener sub−interfaces must be provided by the JFT application.
Implementation of Listener sub−interfaces are already provided by the JFT library.

See the hierarchy of this it.list.jft.event package and the Event and Listener documentation for details.

Package it.list.jft.event Data Model

Package it.list.jft.event Description

152 Package it.list.jft.event Description

The above figure is the UML representation of it.list.jft.event data model.
In blue all interfaces that are Events received from FastTrack server and handled by some Listener.

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.

Package it.list.jft.event Description

Package it.list.jft.event Description 153

mailto:ftapi@list-group.com

Package it.list.jft.event Description

154 Package it.list.jft.event Description

Hierarchy For Package it.list.jft.event
Package Hierarchies:

All Packages•

Interface Hierarchy

Event
ConnectionEvent

ConnectionCloseEvent◊
ConnectionLostEvent◊
ConnectionOpenEvent◊

♦

EntityClassQueryEvent♦
FilterEvent

FilterCreateEvent◊
FilterDestroyEvent◊
FilterSetEvent◊

♦

MulticastConnectionEvent♦
QueryEvent

QueryCreateEvent◊
QueryDestroyEvent◊
QueryNotifyEvent◊
QueryRowsEvent◊

♦

SubscriptionEvent
SubscriptionIdleEvent◊
SubscriptionNotifyEvent◊
SubscriptionStartEvent◊
SubscriptionStopEvent◊

♦

TransactionEvent
TransactionQueryEvent◊
TransactionSendEvent◊

♦

•

Listener
ConnectionListener♦
EntityClassQueryListener♦
FilterListener♦
MulticastConnectionListener♦
QueryListener♦
SubscriptionListener♦
TransactionListener♦

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface Event

All Known Subinterfaces:
ConnectionCloseEvent, ConnectionEvent, ConnectionLostEvent, ConnectionOpenEvent,
EntityClassQueryEvent, FilterCreateEvent, FilterDestroyEvent, FilterEvent, FilterSetEvent,
MulticastConnectionEvent, QueryCreateEvent, QueryDestroyEvent, QueryEvent, QueryNotifyEvent,

•

Hierarchy For Package it.list.jft.event 155

mailto:ftapi@list-group.com

QueryRowsEvent, SubscriptionEvent, SubscriptionIdleEvent, SubscriptionNotifyEvent,
SubscriptionStartEvent, SubscriptionStopEvent, TransactionEvent, TransactionQueryEvent,
TransactionSendEvent

public interface Event

Super−interface common to all events.

Events related to the various communication objects (Connection, Filter, Query, Subscription,
Transaction) must be handled by the methods of the corresponding Listener.

Field Summary

Fields

Modifier and Type Field and Description

static int
RESULT_GENERIC_ERROR
Generic failure−code returned by the server when a more specific
error is not available.

static int
RESULT_OK
Positive answer returned by the server when the operation
completed successfully.

♦

Method Summary

Methods

Modifier and Type Method and Description

int
getResult()
Returns the server−answer associated to this event.

♦

•

Field Detail

RESULT_OK

static final int RESULT_OK

Positive answer returned by the server when the operation completed successfully.

This value is returned by getResult().

See Also:
Constant Field Values

◊

♦ •

Interface Event

156 Interface Event

RESULT_GENERIC_ERROR

static final int RESULT_GENERIC_ERROR

Generic failure−code returned by the server when a more specific error is not available.

This value is returned by getResult().

See Also:
Constant Field Values

◊

Method Detail

getResult

int getResult()

Returns the server−answer associated to this event.

Each event generated by the server transports a server−answer that specifies how the
corresponding operation was performed on the server.

E.g.: a ConnectionOpenEvent is generated by the server as an answer to the
Connection.open() sent by the client. If the opening was OK then the server−answer
(returned by this method) is RESULT_OK, otherwise a generic
(RESULT_GENERIC_ERROR) or specific (ConnectionOpenEvent result codes) error is
returned.

Returns:
the server−answer associated to this event.
It may be RESULT_OK or RESULT_GENERIC_ERROR or a different value
indicating a specific error that is described in the specific event documentation.

◊

♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface ConnectionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
ConnectionCloseEvent, ConnectionLostEvent, ConnectionOpenEvent

public interface ConnectionEvent
extends Event

Generic event related to the Connection Lifecycle.

Events related to this super−interface must be handled by the methods of ConnectionListener.

•

Interface Event

Interface Event 157

mailto:ftapi@list-group.com

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Connection
getConnection()
Returns the connection associated to this event.

Methods inherited from interface Event

getResult

◊

♦

•

Method Detail

getConnection

Connection getConnection()

Returns the connection associated to this event.

Returns:
the connection associated to this event.
null is never returned.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface ConnectionCloseEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionCloseEvent
extends ConnectionEvent

Server−answer to Connection.close().

This event must be handled by ConnectionListener.onConnectionClose().

•

Interface ConnectionEvent

158 Interface ConnectionEvent

mailto:ftapi@list-group.com

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface ConnectionEvent

getConnection

◊

Methods inherited from interface Event

getResult

◊

♦

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface ConnectionLostEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionLostEvent
extends ConnectionEvent

Event generated when the connection with the server crashed or when the server choose to terminate the
connection.

This event must be handled by ConnectionListener.onConnectionLost().

With this event the server result is always Event.RESULT_GENERIC_ERROR.

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary
♦

•

Interface ConnectionCloseEvent

Interface ConnectionCloseEvent 159

mailto:ftapi@list-group.com

Methods inherited from interface ConnectionEvent

getConnection

◊

Methods inherited from interface Event

getResult

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface ConnectionOpenEvent

All Superinterfaces:
ConnectionEvent, Event

public interface ConnectionOpenEvent
extends ConnectionEvent

Server−answer to Connection.open().

This event must be handled by ConnectionListener.onConnectionOpen().

•

Field Summary

Fields

Modifier and
Type

Field and Description

static int
RESULT_ALREADY_LOGGED
Failure−code: user already logged.

static int
RESULT_EXCEED_SESSION
Failure−code: too much open sessions with the server.

static int
RESULT_INVALID_AUTH_KEY
Failure−code: bad configuration key associated to the connection.

static int
RESULT_INVALID_CLIENTID
Failure−code: bad client ID associated to the connection.

static int
RESULT_INVALID_PASSWORD
Failure−code: bad password associated to the connection.

static int
RESULT_INVALID_PROFILE
Failure−code: invalid profile.

static int
RESULT_INVALID_REVISION
Failure−code: bad application version associated to the connection.

static int RESULT_INVALID_SERVER_STATUS

♦ •

Interface ConnectionLostEvent

160 Interface ConnectionLostEvent

mailto:ftapi@list-group.com

Failure−code: the server is in a status (e.g. still in a start−up state) in which
connections are not allowed.

static int
RESULT_INVALID_SERVICE
Failure−code: bad user type associated to the connection.

static int
RESULT_INVALID_USERNAME
Failure−code: bad user name associated to the connection.

static int
RESULT_INVALID_USERTYPE
Failure−code: bad user type associated to the connection.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

Method Summary

Methods

Modifier and
Type

Method and Description

int getActiveConnectionType()

int
getBusinessServiceID()
Returns the business service ID associated to this connection.

int
getClientServiceID()
Returns the client service ID associated to this connection.

int
getEnvironment()
Returns an indication of the FastTrack server environment (e.g.: Production,
Testing, etc...).

int
getFTID()
Returns the FastTrack Server ID.

int[]
getMarketRevision()
Returns the version of the server.

int
getSystemDate()
Returns the system date of the server.

Date
getSystemDateTime()
Returns the system date and time of the server.

int
getSystemTime()
Returns the system time of the server.

Methods inherited from interface ConnectionEvent

getConnection

◊

♦

Interface ConnectionOpenEvent

Interface ConnectionOpenEvent 161

Methods inherited from interface Event

getResult

◊

Field Detail

RESULT_INVALID_PASSWORD

static final int RESULT_INVALID_PASSWORD

Failure−code: bad password associated to the connection.
See Also:

Constant Field Values

◊

RESULT_INVALID_USERNAME

static final int RESULT_INVALID_USERNAME

Failure−code: bad user name associated to the connection.
See Also:

Constant Field Values

◊

RESULT_INVALID_REVISION

static final int RESULT_INVALID_REVISION

Failure−code: bad application version associated to the connection.
See Also:

Constant Field Values

◊

RESULT_ALREADY_LOGGED

static final int RESULT_ALREADY_LOGGED

Failure−code: user already logged.
See Also:

Constant Field Values

◊

RESULT_INVALID_CLIENTID

static final int RESULT_INVALID_CLIENTID

Failure−code: bad client ID associated to the connection.
See Also:

Constant Field Values

◊

RESULT_INVALID_SERVER_STATUS

static final int RESULT_INVALID_SERVER_STATUS

Failure−code: the server is in a status (e.g. still in a start−up state) in which connections are
not allowed.
See Also:

Constant Field Values

◊

♦ •

Interface ConnectionOpenEvent

162 Interface ConnectionOpenEvent

RESULT_EXCEED_SESSION

static final int RESULT_EXCEED_SESSION

Failure−code: too much open sessions with the server.
See Also:

Constant Field Values

◊

RESULT_INVALID_PROFILE

static final int RESULT_INVALID_PROFILE

Failure−code: invalid profile.
See Also:

Constant Field Values

◊

RESULT_INVALID_AUTH_KEY

static final int RESULT_INVALID_AUTH_KEY

Failure−code: bad configuration key associated to the connection.
See Also:

Constant Field Values

◊

RESULT_INVALID_USERTYPE

static final int RESULT_INVALID_USERTYPE

Failure−code: bad user type associated to the connection.
See Also:

Constant Field Values

◊

RESULT_INVALID_SERVICE

static final int RESULT_INVALID_SERVICE

Failure−code: bad user type associated to the connection.
See Also:

Constant Field Values

◊

Method Detail

getClientServiceID

int getClientServiceID()

Returns the client service ID associated to this connection.

The client service ID is one of the elements that identify a TransactionID.

This method must be called only when the result is Event.RESULT_OK.

Returns:
the client service ID associated to this connection.
−1 is returned when the result is not Event.RESULT_OK.

See Also:

◊

♦

Interface ConnectionOpenEvent

Interface ConnectionOpenEvent 163

TransactionID.belongsTo(it.list.jft.Connection)
getBusinessServiceID

int getBusinessServiceID()

Returns the business service ID associated to this connection.

The business service ID is one of the elements that identify a TransactionID.

This method must be called only when the result is Event.RESULT_OK.

Returns:
the business service ID associated to this connection.
−1 is returned when the result is not Event.RESULT_OK.

See Also:
TransactionID.belongsTo(it.list.jft.Connection)

◊

getSystemDate

int getSystemDate()

Returns the system date of the server.

The value returned reflects the date in which the server opened the connection.

The returned value is an int whose decimal representation is: YYYYMMDD (i.e.:
year*10000 + month*100 + day).

This method must be called only when the result is Event.RESULT_OK.

Returns:
the system date of the server.
−1 is returned when the result is not Event.RESULT_OK.

See Also:
getSystemDateTime()

◊

getSystemTime

int getSystemTime()

Returns the system time of the server.

The value returned reflects the time in which the server opened the connection.

The returned value is an int whose decimal representation is: HHMMSScc (i.e.:
hours*1000000 + minutes*10000 + seconds*100 + hundreds).

This method must be called only when the result is Event.RESULT_OK.

Returns:
the system time of the server.
−1 is returned when the result is not Event.RESULT_OK.

See Also:
getSystemDateTime()

◊

Interface ConnectionOpenEvent

164 Interface ConnectionOpenEvent

getSystemDateTime

Date getSystemDateTime()

Returns the system date and time of the server.

The value returned reflects the date and time in which the server opened the connection.

This method must be called only when the result is Event.RESULT_OK.

This utility method is defined in terms of getSystemDate() and getSystemTime() as
follows:
int date = getSystemDate();
int time = getSystemTime();
if(date == −1 || time == −1)
 return −1;
Calendar cal = Calendar.getInstance();
cal.set(date/10000, date%10000/100−1, date%100, time/1000000,
time%1000000/10000, time%1000/100);
return new Date(cal.getTimeInMillis() + time%100*10);

Returns:
the system date and time of the server.
−1 is returned when the result is not Event.RESULT_OK.

◊

getMarketRevision

int[] getMarketRevision()

Returns the version of the server.

A version is always represented by a three−dimensional array; e.g. the version 2.0.3 is
represented by:
 int[] version = {2, 0, 3};

This method must be called only when the result is Event.RESULT_OK.

Returns:
the version of the server.
null is returned when the result is not Event.RESULT_OK.

◊

getFTID

int getFTID()

Returns the FastTrack Server ID.

Each FastTrack server in the world is identified by an unique FastTrack Server ID.

This method must be called only when the result is Event.RESULT_OK.

Returns:
the FastTrack Server ID.
−1 is returned when the result is not Event.RESULT_OK.

◊

Interface ConnectionOpenEvent

Interface ConnectionOpenEvent 165

getEnvironment

int getEnvironment()

Returns an indication of the FastTrack server environment (e.g.: Production, Testing, etc...).

the precise meaning of this value depends on the particular FastTrack server and it is
documented in the corresponding manual.

This method must be called only when the result is Event.RESULT_OK.

Returns:
an indication of the FastTrack server environment.
−1 is returned when the result is not Event.RESULT_OK.

◊

getActiveConnectionType

int getActiveConnectionType()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface EntityClassQueryEvent

All Superinterfaces:
Event

public interface EntityClassQueryEvent
extends Event

•

Field Summary

Fields

Modifier and Type Field and Description

static int RESULT_ENTITY_CLASS_NOT_AVAILABLE

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

EntityClass getEntityClass()

♦

•

Interface ConnectionOpenEvent

166 Interface ConnectionOpenEvent

mailto:ftapi@list-group.com

EntityClassQuery getEntityClassQuery()

boolean isEnum()

Methods inherited from interface Event

getResult

◊

Field Detail

RESULT_ENTITY_CLASS_NOT_AVAILABLE

static final int RESULT_ENTITY_CLASS_NOT_AVAILABLE

See Also:
Constant Field Values

◊

♦

Method Detail

getEntityClassQuery

EntityClassQuery getEntityClassQuery()

◊

getEntityClass

EntityClass getEntityClass()

◊

isEnum

boolean isEnum()

◊

♦

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterEvent

All Superinterfaces:
Event

All Known Subinterfaces:
FilterCreateEvent, FilterDestroyEvent, FilterSetEvent

public interface FilterEvent
extends Event

Generic event related to the Filter Lifecycle.

Events related to this super−interface must be handled by the methods of FilterListener.

•

Interface EntityClassQueryEvent

Interface EntityClassQueryEvent 167

mailto:ftapi@list-group.com

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Filter
getFilter()
Returns the filter associated to this event.

Methods inherited from interface Event

getResult

◊

♦

•

Method Detail

getFilter

Filter getFilter()

Returns the filter associated to this event.

Returns:
the filter associated to this event.
null is never returned.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterCreateEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterCreateEvent
extends FilterEvent

Server−answer to Filter.create().

This event must be handled by FilterListener.onFilterCreate().

•

Interface FilterEvent

168 Interface FilterEvent

mailto:ftapi@list-group.com

Field Summary

Fields

Modifier and Type Field and Description

static int
RESULT_FILTER_NOT_IMPLEMENTED
Failure−code: Filtering is not implemented by the server.

static int
RESULT_INVALID_ENTITY_CLASS_ID
Failure−code: Entity Class ID is invalid.

static int
RESULT_INVALID_FILTER_LEN
Failure−code: filter definition too long.

static int
RESULT_INVALID_FILTER_TYPE
Failure−code: filter type is invalid.

static int
RESULT_SYNTAX_ERROR
Failure−code: syntax error in filter definition.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

int getFilterID()

Methods inherited from interface FilterEvent

getFilter

◊

Methods inherited from interface Event

getResult

◊

♦

•

Field Detail

RESULT_SYNTAX_ERROR

static final int RESULT_SYNTAX_ERROR

Failure−code: syntax error in filter definition.

The server is not able to understand the given filter definition.

See Also:

◊

♦ •

Interface FilterCreateEvent

Interface FilterCreateEvent 169

Constant Field Values
RESULT_INVALID_FILTER_LEN

static final int RESULT_INVALID_FILTER_LEN

Failure−code: filter definition too long.
See Also:

Constant Field Values

◊

RESULT_INVALID_ENTITY_CLASS_ID

static final int RESULT_INVALID_ENTITY_CLASS_ID

Failure−code: Entity Class ID is invalid.
See Also:

Constant Field Values

◊

RESULT_INVALID_FILTER_TYPE

static final int RESULT_INVALID_FILTER_TYPE

Failure−code: filter type is invalid.
See Also:

Constant Field Values

◊

RESULT_FILTER_NOT_IMPLEMENTED

static final int RESULT_FILTER_NOT_IMPLEMENTED

Failure−code: Filtering is not implemented by the server.
See Also:

Constant Field Values

◊

Method Detail

getFilterID

int getFilterID()

◊

♦

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterDestroyEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterDestroyEvent
extends FilterEvent

Server−answer to Filter.destroy().

•

Interface FilterCreateEvent

170 Interface FilterCreateEvent

mailto:ftapi@list-group.com

This event must be handled by FilterListener.onFilterDestroy().

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface FilterEvent

getFilter

◊

Methods inherited from interface Event

getResult

◊

♦

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterSetEvent

All Superinterfaces:
Event, FilterEvent

public interface FilterSetEvent
extends FilterEvent

Server−answer to Filter.set(java.lang.String).

This event must be handled by FilterListener.onFilterSet().

•

Field Summary

Fields

Modifier and Type Field and Description

static int
RESULT_ALREADY_SET
Failure−code: filter value already set.

static int
RESULT_INVALID_FILTER_LEN
Failure−code: filter value too long.

♦ •

Interface FilterDestroyEvent

Interface FilterDestroyEvent 171

mailto:ftapi@list-group.com

static int
RESULT_SYNTAX_ERROR
Failure−code: syntax error in filter value.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

Method Summary

Methods inherited from interface FilterEvent

getFilter

◊

Methods inherited from interface Event

getResult

◊

♦

Field Detail

RESULT_SYNTAX_ERROR

static final int RESULT_SYNTAX_ERROR

Failure−code: syntax error in filter value.

The server is not able to understand the given filter value.

See Also:
Constant Field Values

◊

RESULT_INVALID_FILTER_LEN

static final int RESULT_INVALID_FILTER_LEN

Failure−code: filter value too long.
See Also:

Constant Field Values

◊

RESULT_ALREADY_SET

static final int RESULT_ALREADY_SET

Failure−code: filter value already set.
See Also:

Constant Field Values

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterSetEvent

172 Interface FilterSetEvent

mailto:ftapi@list-group.com

Interface MulticastConnectionEvent

All Superinterfaces:
Event

public interface MulticastConnectionEvent
extends Event

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

int getAction()

Entity getEntity()

int getKeyID()

MulticastConnection getMulticastConnection()

TimeStamp getTimeStamp()

Methods inherited from interface Event

getResult

◊

♦

•

Method Detail

getMulticastConnection

MulticastConnection getMulticastConnection()

◊

getEntity

Entity getEntity()

◊

getAction

int getAction()

◊

♦ •

Interface MulticastConnectionEvent

Interface MulticastConnectionEvent 173

getKeyID

int getKeyID()

◊

getTimeStamp

TimeStamp getTimeStamp()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryEvent

All Superinterfaces:
Event

All Known Subinterfaces:
QueryCreateEvent, QueryDestroyEvent, QueryNotifyEvent, QueryRowsEvent

public interface QueryEvent
extends Event

Generic event related to the Query Lifecycle.

Events related to this super−interface must be handled by the methods of QueryListener.

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Query
getQuery()
Returns the query associated to this
event.

Methods inherited from interface Event

getResult

◊

♦

•

Interface MulticastConnectionEvent

174 Interface MulticastConnectionEvent

mailto:ftapi@list-group.com

Method Detail

getQuery

Query getQuery()

Returns the query associated to this event.

Returns:
the query associated to this event.
null is never returned.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryCreateEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryCreateEvent
extends QueryEvent

Server−answer to Query.create().

This event must be handled by QueryListener.onQueryCreate().

•

Field Summary

Fields

Modifier and Type Field and Description

static int
RESULT_BAD_PARAMETERS
Failure−code: bad parameter associated to the query.

static int
RESULT_WRONG_QUERY_ID
Failure−code: bad QueryID associated to the query.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

♦

•

Interface QueryEvent

Interface QueryEvent 175

mailto:ftapi@list-group.com

Modifier and
Type

Method and Description

int
getNumRows()
Returns the number of rows in the result−set as computed by the server.

int
getTimeToLive()
Returns the interval time (in seconds) during which the server cache the
result−set.

boolean
resultSetFollows()
Returns the indication that the result−set is immediately available.

Methods inherited from interface QueryEvent

getQuery

◊

Methods inherited from interface Event

getResult

◊

Field Detail

RESULT_BAD_PARAMETERS

static final int RESULT_BAD_PARAMETERS

Failure−code: bad parameter associated to the query.

The server is not able to process the query with the given parameter.

See Also:
Constant Field Values

◊

RESULT_WRONG_QUERY_ID

static final int RESULT_WRONG_QUERY_ID

Failure−code: bad QueryID associated to the query.

The server is not able to process the query with the given QueryID.

See Also:
Constant Field Values

◊

♦

Method Detail
♦

•

Interface QueryCreateEvent

176 Interface QueryCreateEvent

getNumRows

int getNumRows()

Returns the number of rows in the result−set as computed by the server.

If the server does not known this number then −1 is returned: e.g. when
resultSetFollows() returns false.

This method must be called only when the result is Event.RESULT_OK.

Returns:
number of rows in the result−set: N >= 0 means that the result−set contains N
elements.
−1 is returned when the server is unable to compute this number, or
when the result is not Event.RESULT_OK.

◊

getTimeToLive

int getTimeToLive()

Returns the interval time (in seconds) during which the server cache the result−set.

During this interval the client may issue Query.queryRows() invocations to obtains the
various parts of the result−set.
The value returned is meaningfull only if resultSetFollows() returns false.

If the server does not known this interval then zero is returned: e.g. when
resultSetFollows() returns true.

This method must be called only when the result is Event.RESULT_OK.

Returns:
number of seconds during which the server cache the result−set.
Zero is returned when the interval is not known, or
when the resultSetFollows() is true, or
when the result is not Event.RESULT_OK.

◊

resultSetFollows

boolean resultSetFollows()

Returns the indication that the result−set is immediately available.

true means that QueryListener.onQueryNotify() will be automatically called
N+1 times:

N>=0 times (with the EOQ indication equals to false) for each of the N rows in the
result−set;

⋅

+ 1 additional time (with the EOQ indication equals to true) to indicate the end of
the result−set.

⋅

false means that QueryListener.onQueryNotify() will not be automatically
called (as result of Query.create()) and the client must issue a specific
Query.queryRows() to obtains a subset of the result−set.

◊

Interface QueryCreateEvent

Interface QueryCreateEvent 177

This method must be called only when the result is Event.RESULT_OK.

Returns:
indication regarding the immediate availability of the result−set.
false is returned when result is not Event.RESULT_OK.

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryDestroyEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryDestroyEvent
extends QueryEvent

Server−answer to Query.destroy().

This event must be handled by QueryListener.onQueryDestroy().

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface QueryEvent

getQuery

◊

Methods inherited from interface Event

getResult

◊

♦

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryNotifyEvent

All Superinterfaces:
Event, QueryEvent

•

Interface QueryDestroyEvent

178 Interface QueryDestroyEvent

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

public interface QueryNotifyEvent
extends QueryEvent

Event generated when a single entity (or the EOQ indication) of a query result−set is available.

This event must be handled by QueryListener.onQueryNotify().

With this event the server result is always Event.RESULT_OK.

Field Summary

Fields

Modifier and Type Field and Description

static int
ACTION_ENTITY_ADD
Action−code: entity is on the server.

static int
ACTION_ENTITY_DEL
Action−code: entity logically removed on the server.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

int
getAction()
Returns the server action associated with the entity available on this event.

Entity
getEntity()
Returns the entity of the current row in the result−set.

boolean
getEOQ()
Returns the indication that the result−set is ended.

int
getRowNumber()
Returns the index (1−based) of the current row in the result−set.

TimeStamp
getTimeStamp()
Returns the entity timestamp.

Methods inherited from interface QueryEvent

getQuery

◊

♦

•

Interface QueryNotifyEvent

Interface QueryNotifyEvent 179

Methods inherited from interface Event

getResult

◊

Field Detail

ACTION_ENTITY_ADD

static final int ACTION_ENTITY_ADD

Action−code: entity is on the server.

This value may be returned by getAction().

See Also:
Constant Field Values

◊

ACTION_ENTITY_DEL

static final int ACTION_ENTITY_DEL

Action−code: entity logically removed on the server.

This value may be returned by getAction().

See Also:
Constant Field Values

◊

♦

Method Detail

getRowNumber

int getRowNumber()

Returns the index (1−based) of the current row in the result−set.

The index of the first row of a result−set returned by Query.create() is 1.
The index of the first row of a result−set returned by Query.queryRows() is firstRow.

This method must be called only when the EOQ indication is false.

Returns:
the index (1−based) of the current row in the result−set.
Zero is returned when the EOQ indication is true
or when the information is not available (some primitives FastTrack services always
return zero for every rows of the returned result−set).

◊

♦

•

Interface QueryNotifyEvent

180 Interface QueryNotifyEvent

getTimeStamp

TimeStamp getTimeStamp()

Returns the entity timestamp.

This method must be called only when the EOQ indication is false.

Returns:
the entity timestamp.
null is returned when the EOQ indication is true or if entity timestamp is not sent
by the server.

◊

getEntity

Entity getEntity()

Returns the entity of the current row in the result−set.

This method must be called only when the EOQ indication is false.

Returns:
the entity of the current row in the result−set.
null is returned when the EOQ indication is true.

◊

getAction

int getAction()

Returns the server action associated with the entity available on this event.

The possible returned values are described in the Field Summary section.

Returns:
the server action associated with the entity available on this event if the Entity is not
null.

◊

getEOQ

boolean getEOQ()

Returns the indication that the result−set is ended.

If the query result−set computed by the server, as an aswer to a correct Query.create()
or Query.queryRows(), is composed by N entities then the
QueryListener.onQueryNotify() method (with a QueryNotifyEvent as
parameter) will be invoked N+1 times: N times with each of the N entities (and this EOQ
indication equals to false) and one more time with this EOQ indication equals to true.

Returns:
the indication that the result−set is ended.

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryNotifyEvent

Interface QueryNotifyEvent 181

mailto:ftapi@list-group.com

Interface QueryRowsEvent

All Superinterfaces:
Event, QueryEvent

public interface QueryRowsEvent
extends QueryEvent

Server−answer to Query.queryRows().

This event must be handled by QueryListener.onQueryRows().

•

Field Summary

Fields

Modifier and Type Field and Description

static int
RESULT_WRONG_FIRST_ROW
Failure−code: bad firstRow parameter of Query.queryRows().

static int
RESULT_WRONG_ROW_NUMBER
Failure−code: bad rowNumber parameter of Query.queryRows().

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface QueryEvent

getQuery

◊

Methods inherited from interface Event

getResult

◊

♦

•

Field Detail

RESULT_WRONG_FIRST_ROW

static final int RESULT_WRONG_FIRST_ROW

Failure−code: bad firstRow parameter of Query.queryRows().
See Also:

◊

♦ •

Interface QueryRowsEvent

182 Interface QueryRowsEvent

Constant Field Values
RESULT_WRONG_ROW_NUMBER

static final int RESULT_WRONG_ROW_NUMBER

Failure−code: bad rowNumber parameter of Query.queryRows().
See Also:

Constant Field Values

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
SubscriptionIdleEvent, SubscriptionNotifyEvent, SubscriptionStartEvent, SubscriptionStopEvent

public interface SubscriptionEvent
extends Event

Generic event related to the Subscription Lifecycle.

Events related to this super−interface must be handled by the methods of SubscriptionListener.

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

Subscription
getSubscription()
Returns the subscription associated to this event.

Methods inherited from interface Event

getResult

◊

♦

•

Interface QueryRowsEvent

Interface QueryRowsEvent 183

mailto:ftapi@list-group.com

Method Detail

getSubscription

Subscription getSubscription()

Returns the subscription associated to this event.

Returns:
the subscription associated to this event.
null is never returned.

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionIdleEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionIdleEvent
extends SubscriptionEvent

Event generated when the flow of historical data is finished and the start of actual data is starting.

This event is generated only if the type of query of the subscription is not
SubscriptionParam.QUERY_TYPE_ON_TIME.

This event must be handled by SubscriptionListener.onSubscriptionIdle().

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface SubscriptionEvent

getSubscription

◊

♦

•

Interface SubscriptionEvent

184 Interface SubscriptionEvent

mailto:ftapi@list-group.com

Methods inherited from interface Event

getResult

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionNotifyEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionNotifyEvent
extends SubscriptionEvent

Event generated when an actual or historical data or a server−answer to
Subscription.refreshEntity() is available.

This event must be handled by SubscriptionListener.onSubscriptionNotify().

With this event the server result is always Event.RESULT_OK.

•

Field Summary

Fields

Modifier and
Type

Field and Description

static int
ACTION_ENTITY_ADD
Action−code: entity added on the server, or just returned as an answer to
Subscription.refreshEntity().

static int
ACTION_ENTITY_DEL
Action−code: entity logically removed on the server.

static int
ACTION_ENTITY_KIL
Action−code: entity physically removed on the server.

static int
ACTION_ENTITY_RWT
Action−code: entity rewritten on the server.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

♦

•

Interface SubscriptionIdleEvent

Interface SubscriptionIdleEvent 185

mailto:ftapi@list-group.com

Modifier and
Type

Method and Description

int
getAction()
Returns the server action associated with the entity available on this event.

Entity
getEntity()
Returns the entity available on this event.

int
getKeyID()
Returns the index of the key on the basis of which the server has carried out
getAction().

TimeStamp
getTimeStamp()
Returns the timestamp associated with the entity available on this event.

boolean
isMasked()
Returns the indication that some fields of getEntity() may be missings.

Methods inherited from interface SubscriptionEvent

getSubscription

◊

Methods inherited from interface Event

getResult

◊

Field Detail

ACTION_ENTITY_ADD

static final int ACTION_ENTITY_ADD

Action−code: entity added on the server, or just returned as an answer to
Subscription.refreshEntity().

Historical data are always tagged as ACTION_ENTITY_ADD.

This value may be returned by getAction().

See Also:
Constant Field Values

◊

ACTION_ENTITY_DEL

static final int ACTION_ENTITY_DEL

Action−code: entity logically removed on the server.

In this case the Entity returned by getEntity() is generally undefined on any fields apart
from those associated with getKeyID().

Historical data are never tagged as ACTION_ENTITY_DEL.

◊

♦ •

Interface SubscriptionNotifyEvent

186 Interface SubscriptionNotifyEvent

This value may be returned by getAction().

See Also:
Constant Field Values

ACTION_ENTITY_RWT

static final int ACTION_ENTITY_RWT

Action−code: entity rewritten on the server.

Historical data are never tagged as ACTION_ENTITY_RWT.

This value may be returned by getAction().

See Also:
Constant Field Values

◊

ACTION_ENTITY_KIL

static final int ACTION_ENTITY_KIL

Action−code: entity physically removed on the server.

Every time there is an ACTION_ENTITY_KIL the server EntityClass version changed. This
new version is available in getTimeStamp().getDateTime() and it's different from both
the initially subscribed EntityClass version and the initially required
EntityClass version.

If getKeyID() > 0,
then

the Entity returned by getEntity() is generally undefined on any fields apart
from those associated with getKeyID()

⋅

otherwise (getKeyID() <= 0)
all entities are physically removed from the server, and⋅
getEntity() returns null.⋅

Historical data are never tagged as ACTION_ENTITY_KIL.

This value may be returned by getAction().

See Also:
Constant Field Values

◊

Method Detail

getAction

int getAction()

Returns the server action associated with the entity available on this event.

The possible returned values are described in the Field Summary section.

◊

♦

Interface SubscriptionNotifyEvent

Interface SubscriptionNotifyEvent 187

If this event is the server−answer to a Subscription.refreshEntity() the value
ACTION_ENTITY_ADD is returned.

Returns:
the server action associated with the entity available on this event.

getTimeStamp

TimeStamp getTimeStamp()

Returns the timestamp associated with the entity available on this event.

Returns:
the timestamp associated with the entity available on this event.
null is never returned.

◊

getEntity

Entity getEntity()

Returns the entity available on this event.

If getKeyID() <= 0
then

all entities are physically removed from the server,⋅
this method returns null,⋅

else
if getAction() is ACTION_ENTITY_DEL or ACTION_ENTITY_KIL

the Entity returned by this method is generally undefined on any fields apart
from those associated with getKeyID(),

•

else
if this event refers a masked subscriptions and it is not an answer to a
Subscription.refreshEntity()
then

isMasked() returns true,♦
the Entity returned by this method is generally undefined on any
fields apart from those associated with the mask,

♦

else
isMasked() returns false,♦
all the fields of the Entity returned by this method are meaningful.♦

•

⋅

Returns:
the entity available on this event.
null is returned when getKeyID() <= 0.

◊

getKeyID

int getKeyID()

Returns the index of the key on the basis of which the server has carried out getAction().

◊

Interface SubscriptionNotifyEvent

188 Interface SubscriptionNotifyEvent

For ACTION_ENTITY_DEL and ACTION_ENTITY_KIL this value determines which field
are available in getEntity().

Returns:
the index of the key on the basis of which the server has carried out getAction().

See Also:
getEntity()

isMasked

boolean isMasked()

Returns the indication that some fields of getEntity() may be missings.

For ACTION_ENTITY_ADD and ACTION_ENTITY_RWT this value determines which field
are available in getEntity().

true is returned when this event refers a masked subscriptions and it is not an answer to a
Subscription.refreshEntity().
In this case the Entity returned by getEntity() is generally undefined on any fields apart
from those associated with the mask.

false is returned when this event refers a not masked subscriptions or it is an answer to a
Subscription.refreshEntity().
In this case all fields of the Entity returned by getEntity() are meaningful.

Please note that the behaviour of this method does not depends on the values
(SubscriptionParam.SUBSCRIBE_MASKED_FLOW_ALL and
SubscriptionParam.SUBSCRIBE_MASKED_FLOW_LAST) given to
SubscriptionParam.setFlow().

Returns:
the indication that some fields of getEntity() may be missings.
The return value is undefined for ACTION_ENTITY_DEL and
ACTION_ENTITY_KIL.

See Also:
getEntity()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionStartEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionStartEvent
extends SubscriptionEvent

Server−answer to Subscription.start().

•

Interface SubscriptionNotifyEvent

Interface SubscriptionNotifyEvent 189

mailto:ftapi@list-group.com

This event must be handled by SubscriptionListener.onSubscriptionStart().

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods

Modifier and Type Method and Description

int
getEntityClassVersionOnServer()
Returns the version of EntityClass on the
server.

boolean
isEntityClassReset()
Returns a reset−class indication.

Methods inherited from interface SubscriptionEvent

getSubscription

◊

Methods inherited from interface Event

getResult

◊

♦

•

Method Detail

isEntityClassReset

boolean isEntityClassReset()

Returns a reset−class indication.

A true indicates that the required EntityClass version is different from the server
EntityClass version. In this case the historical data that will be available into the next
SubscriptionNotifyEvents are complete and not (as usual) restricted to data
following a given timestamp.

This method must be called only when the result is Event.RESULT_OK.

Returns:
the indication whether a download is needed on all the entities.
false is returned when the result is not Event.RESULT_OK.

◊

♦ •

Interface SubscriptionStartEvent

190 Interface SubscriptionStartEvent

getEntityClassVersionOnServer

int getEntityClassVersionOnServer()

Returns the version of EntityClass on the server.

The returned value may be different from the version requested into the Subscription
parameter. In this case isEntityClassReset() returns true.

This method must be called only when the server result is Event.RESULT_OK.

Returns:
the version of EntityClass on the server.
−1 is returned when the result is not Event.RESULT_OK.

See Also:
isEntityClassReset()

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionStopEvent

All Superinterfaces:
Event, SubscriptionEvent

public interface SubscriptionStopEvent
extends SubscriptionEvent

Server−answer to Subscription.stop().

This event must be handled by SubscriptionListener.onSubscriptionStop().

•

Field Summary

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface SubscriptionEvent

getSubscription

◊

♦

•

Interface SubscriptionStartEvent

Interface SubscriptionStartEvent 191

mailto:ftapi@list-group.com

Methods inherited from interface Event

getResult

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface TransactionEvent

All Superinterfaces:
Event

All Known Subinterfaces:
TransactionQueryEvent, TransactionSendEvent

public interface TransactionEvent
extends Event

Generic event related to the Transaction Lifecycle.

Events related to this super−interface must be handled by the methods of TransactionListener.

With this event the server result is never Event.RESULT_OK.

•

Field Summary

Fields

Modifier and
Type

Field and Description

static int
RESULT_ABORTED
Failure−code: transaction was aborted by the server.

static int
RESULT_COMMITTED
Failure−code: transaction was commited by the server.

static int
RESULT_FLYING
Failure−code: transaction is flying.

static int
RESULT_INVALID_TRANSACTION_ID
Failure−code: transaction is not valid because an invalid Transaction ID
was used.

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦ •

Interface SubscriptionStopEvent

192 Interface SubscriptionStopEvent

mailto:ftapi@list-group.com

Method Summary

Methods

Modifier and Type Method and Description

Entity
getEntity()
Returns the result entity associated to this event.

int
getReasonCode()
Returns the specific market−related reason about the transaction abort.

TimeStamp
getTimeStamp()
Returns the result timestamp.

Transaction
getTransaction()
Returns the transaction associated to this event.

Methods inherited from interface Event

getResult

◊

♦

Field Detail

RESULT_ABORTED

static final int RESULT_ABORTED

Failure−code: transaction was aborted by the server.

In this case getReasonCode() may be used to understand why the market aborted the
transaction.

See Also:
Constant Field Values

◊

RESULT_COMMITTED

static final int RESULT_COMMITTED

Failure−code: transaction was commited by the server.
See Also:

Constant Field Values

◊

RESULT_FLYING

static final int RESULT_FLYING

Failure−code: transaction is flying.
See Also:

Constant Field Values

◊

♦ •

Interface TransactionEvent

Interface TransactionEvent 193

RESULT_INVALID_TRANSACTION_ID

static final int RESULT_INVALID_TRANSACTION_ID

Failure−code: transaction is not valid because an invalid Transaction ID was used.
See Also:

Constant Field Values

◊

Method Detail

getTransaction

Transaction getTransaction()

Returns the transaction associated to this event.

Returns:
the transaction associated to this event.
null is never returned.

◊

getTimeStamp

TimeStamp getTimeStamp()

Returns the result timestamp.

This method must be called only when the result is Event.RESULT_OK or when this event
is instanceof TransactionQueryEvent.

Returns:
the result timestamp.
null is returned when the result is not Event.RESULT_OK and this event is not
instanceof TransactionQueryEvent.

◊

getEntity

Entity getEntity()

Returns the result entity associated to this event.

This method must be called only when the result is Event.RESULT_OK or when this event
is instanceof TransactionQueryEvent.

Returns:
the result entity associated to this event.
null is returned when the result entity was not required, or
when the server choose to not send the result, or
the result is not Event.RESULT_OK and this event is not instanceof
TransactionQueryEvent.

◊

getReasonCode

int getReasonCode()

Returns the specific market−related reason about the transaction abort.

◊

♦

Interface TransactionEvent

194 Interface TransactionEvent

This method must be called only when the result is RESULT_ABORTED.

The exact meaning of the result depends on the specific market server and it is documented in
the correspondig market server manual, apart from the following generic values:

10000: internal error⋅
10001: not logged⋅
10002: inadequate privileges⋅
10003: invalid request action⋅
10004: invalid Transaction ID⋅

Returns:
the specific market−related reason about the transaction abort.
Zero is returned when the result is not RESULT_ABORTED.

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface TransactionQueryEvent

All Superinterfaces:
Event, TransactionEvent

public interface TransactionQueryEvent
extends TransactionEvent

Server−answer to Transaction.query().

This event must be handled by TransactionListener.onTransactionQuery().

With this event the server result is never Event.RESULT_OK.

•

Field Summary

Fields inherited from interface TransactionEvent

RESULT_ABORTED, RESULT_COMMITTED, RESULT_FLYING,
RESULT_INVALID_TRANSACTION_ID

◊

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary
♦

•

Interface TransactionQueryEvent

Interface TransactionQueryEvent 195

mailto:ftapi@list-group.com

Methods inherited from interface TransactionEvent

getEntity, getReasonCode, getTimeStamp, getTransaction

◊

Methods inherited from interface Event

getResult

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface TransactionSendEvent

All Superinterfaces:
Event, TransactionEvent

public interface TransactionSendEvent
extends TransactionEvent

Server−answer to Transaction.send().

This event must be handled by TransactionListener.onTransactionSend().

With this event the server result is never Event.RESULT_OK.

•

Field Summary

Fields inherited from interface TransactionEvent

RESULT_ABORTED, RESULT_COMMITTED, RESULT_FLYING,
RESULT_INVALID_TRANSACTION_ID

◊

Fields inherited from interface Event

RESULT_GENERIC_ERROR, RESULT_OK

◊

♦

Method Summary

Methods inherited from interface TransactionEvent

getEntity, getReasonCode, getTimeStamp, getTransaction

◊

♦

•

Interface TransactionQueryEvent

196 Interface TransactionQueryEvent

mailto:ftapi@list-group.com

Methods inherited from interface Event

getResult

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface Listener

All Known Subinterfaces:
ConnectionListener, EntityClassQueryListener, FilterListener, MulticastConnectionListener,
QueryListener, SubscriptionListener, TransactionListener

public interface Listener

Super−interface common to all listener interfaces.

Listener interfaces must be implemented in order to handle the lifecycle of the various
CommunicationLifeCycle objects (Connection, Filter, Query, Subscription, Transaction).

These subinterfaces are bound to the communication objects creation (through the various makeSomething
methods in Context) and then they may be retrieved by
CommunicationLifeCycle.getListener().

If an exception is thrown and not catch inside a Listener method then the behavior of the application is
controlled by JFT.setExitOnListenerException(boolean) method.

•

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface ConnectionListener

All Superinterfaces:
Listener

public interface ConnectionListener
extends Listener

Interface to be implemented in order to handle the Connection Lifecycle.

This interface is bound to connections created by Context.makeConnection().
It may be retrieved by CommunicationLifeCycle.getListener().

•

Interface TransactionSendEvent

Interface TransactionSendEvent 197

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

Method Summary

Methods

Modifier and Type Method and Description

void
onConnectionClose(ConnectionCloseEvent event)
Called when the server−answer to the Connection.close()
is available.

void
onConnectionLost(ConnectionLostEvent event)
Called when the connection with server crashed or when the server
choose to terminate the connection.

void
onConnectionOpen(ConnectionOpenEvent event)
Called when the server−answer to the Connection.open() is
available.

♦ •

Method Detail

onConnectionOpen

void onConnectionOpen(ConnectionOpenEvent event)

Called when the server−answer to the Connection.open() is available.

If the server result is Event.RESULT_OK,
then

the server has accepted the connection creation.⋅
the connection status has changed to Connection.STATUS_CONNECTED.⋅
the server may now accept subscriptions, queries, filters or transactions.⋅

otherwise

the server has rejected the connection (see the various ConnectionOpenEvent result
codes to understand why).

⋅

the connection status has changed to Connection.STATUS_DISCONNECTED.⋅
the server does not accept any subscriptions, queries, filters or transactions on this
Connection.

⋅

In the latter case it is a good practice to release the connection associated to the event
parameter.

Parameters:
event − the server−answer to the Connection.open()

◊

onConnectionClose

void onConnectionClose(ConnectionCloseEvent event)

Called when the server−answer to the Connection.close() is available.

If the server result is Event.RESULT_OK, then the server has closed the connection

◊

♦ •

Interface ConnectionListener

198 Interface ConnectionListener

otherwise some unknow error occured.

In both cases:

the server does not accept any subscriptions, queries, filters or transactions on this
Connection.

⋅

the connection status has changed to Connection.STATUS_DISCONNECTED.⋅
it is a good practice to release the connection associated to the event parameter.⋅

It is guaranteed that only one method between onConnectionClose and
onConnectionLost will ever be called on the same Listener.

Parameters:
event − the server−answer to the Connection.close()

onConnectionLost

void onConnectionLost(ConnectionLostEvent event)

Called when the connection with server crashed or when the server choose to terminate the
connection.

In this case:

the server result is always Event.RESULT_GENERIC_ERROR.⋅
the connection status has changed to Connection.STATUS_DISCONNECTED.⋅
the server does not accept any subscriptions, queries, filters or transactions on this
Connection.

⋅

it is a good practice to release the connection associated to the event parameter.⋅
It is guaranteed that only one method between onConnectionClose and
onConnectionLost will ever be called on the same Listener.

Parameters:
event − the description of this closure

◊

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface EntityClassQueryListener

All Superinterfaces:
Listener

public interface EntityClassQueryListener
extends Listener

•

Method Summary

Methods

♦ •

Interface ConnectionListener

Interface ConnectionListener 199

mailto:ftapi@list-group.com

Modifier and Type Method and Description

void onEntityClassQuery(EntityClassQueryEvent event)

Method Detail

onEntityClassQuery

void onEntityClassQuery(EntityClassQueryEvent event)

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface FilterListener

All Superinterfaces:
Listener

public interface FilterListener
extends Listener

Interface to be implemented in order to handle the Filter Lifecycle.

This interface is bound to filters created by Context.makeFilter().
It may be retrieved by CommunicationLifeCycle.getListener().

•

Method Summary

Methods

Modifier and
Type

Method and Description

void
onFilterCreate(FilterCreateEvent event)
Called when the server−answer to the Filter.create() is available.

void
onFilterDestroy(FilterDestroyEvent event)
Called when the server−answer to the Filter.destroy() is available.

void
onFilterSet(FilterSetEvent event)
Called when the server−answer to the Filter.set(java.lang.String)
is available.

♦ •

Interface EntityClassQueryListener

200 Interface EntityClassQueryListener

mailto:ftapi@list-group.com

Method Detail

onFilterCreate

void onFilterCreate(FilterCreateEvent event)

Called when the server−answer to the Filter.create() is available.

If the server result is Event.RESULT_OK,
then

the server has accepted the filter creation.⋅
the filter status has changed to Filter.STATUS_CREATED.⋅
the server may now accept Filter.set(java.lang.String) on this filter.⋅
the server may now accept subscriptions based on this filter.⋅

otherwise

the server has rejected the filter creation (see the various FilterCreateEvent result
codes to understand why).

⋅

the filter status has changed to Filter.STATUS_DESTROYED.⋅
the server does not accept any Filter.set(java.lang.String) on this
filter.

⋅

the server does not accept any subscription based on this filter.⋅
In the latter case it is a good practice to release the filter associated to the event parameter.

Parameters:
event − the server−answer to the Filter.create()

◊

onFilterSet

void onFilterSet(FilterSetEvent event)

Called when the server−answer to the Filter.set(java.lang.String) is available.

If the server result is Event.RESULT_OK then the server has accepted the filter setting
otherwise some error occurred (see the various FilterSetEvent result codes to understand
why).

In both cases:
the filter status remains unchanged (the most of cases it remains
Filter.STATUS_CREATED).

◊

the server may now accept subscriptions based on this filter.◊

◊

♦ •

Parameters:
event − the server−answer to the Filter.set(java.lang.String)

onFilterDestroy

void onFilterDestroy(FilterDestroyEvent event)

Called when the server−answer to the Filter.destroy() is available.

•

Interface FilterListener

Interface FilterListener 201

If the server result is Event.RESULT_OK, then the server has destroyed the filter otherwise some unknow
error occured.

In both cases:

the server does not accept any other operation on this filter.♦
the filter status has changed to Filter.STATUS_DESTROYED.♦
it is a good practice to release the filter associated to the event parameter.♦

Parameters:
event − the server−answer to the Filter.destroy()

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface MulticastConnectionListener

All Superinterfaces:
Listener

public interface MulticastConnectionListener
extends Listener

•

Method Summary

Methods

Modifier and Type Method and Description

void onMulticastConnection(MulticastConnectionEvent event)

♦ •

Method Detail

onMulticastConnection

void onMulticastConnection(MulticastConnectionEvent event)

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface QueryListener

All Superinterfaces:
Listener

•

Interface MulticastConnectionListener

202 Interface MulticastConnectionListener

mailto:ftapi@list-group.com
mailto:ftapi@list-group.com

public interface QueryListener
extends Listener

Interface to be implemented in order to handle the Query Lifecycle.

This interface is bound to queries created by Context.makeQuery().
It may be retrieved by CommunicationLifeCycle.getListener().

Method Summary

Methods

Modifier and Type Method and Description

void
onQueryCreate(QueryCreateEvent event)
Called when the server−answer to the Query.create() is available.

void
onQueryDestroy(QueryDestroyEvent event)
Called when the server−answer to the Query.destroy() is available.

void
onQueryNotify(QueryNotifyEvent event)
Called when an entity of a query result−set is available.

void
onQueryRows(QueryRowsEvent event)
Called when the server−answer to the Query.queryRows() is available.

♦ •

Method Detail

onQueryCreate

void onQueryCreate(QueryCreateEvent event)

Called when the server−answer to the Query.create() is available.

If the server result is Event.RESULT_OK,
then

the server has accepted the query creation.⋅
the query status has changed to Query.STATUS_CREATED.⋅
if QueryCreateEvent.resultSetFollows() is true then the server starts
to send QueryNotifyEvent events to notify the query result.

⋅

if QueryCreateEvent.resultSetFollows() is false then the server may
now accept Query.QueryRows() on this query.

⋅

otherwise

the server has rejected the query creation (see the various QueryCreateEvent result
codes to understand why).

⋅

the query status has changed to Query.STATUS_DESTROYED.⋅
the server does not accept any Query.QueryRows on this query.⋅

◊

♦ •

Interface QueryListener

Interface QueryListener 203

the server does not send any QueryNotifyEvent events to notify the query
result.

⋅

In the latter case it is a good practice to release the query associated to the event
parameter.

Parameters:
event − the server−answer to the Query.create()

onQueryRows

void onQueryRows(QueryRowsEvent event)

Called when the server−answer to the Query.queryRows() is available.

If the server result is Event.RESULT_OK,
then

the server has accepted the query request.⋅
the server starts to send QueryNotifyEvent events to notify the query result.⋅

otherwise

the server has rejected the query request (see the various QueryRowsEvent result
codes to understand why).

⋅

the server does not send any QueryNotifyEvent events to notify the query
result.

⋅

In both cases the query status remains Query.STATUS_CREATED.

Parameters:
event − the server−answer to the Query.queryRows()

◊

onQueryNotify

void onQueryNotify(QueryNotifyEvent event)

Called when an entity of a query result−set is available.

If the query result−set computed by the server, as an aswer to a correct Query.create()
or Query.queryRows(), is composed by N entities then this method will be invoked
(N+1) times: N times with each of the N entities and one more time with the EOQ indication.

In any case:

the server result is always Event.RESULT_OK.⋅
the query status remains Query.STATUS_CREATED.⋅
the data is available through the various QueryNotifyEvent methods⋅

Parameters:
event − event containing an entity of the query result−set or the EOQ indication.

◊

onQueryDestroy

void onQueryDestroy(QueryDestroyEvent event)

Called when the server−answer to the Query.destroy() is available.

◊

Interface QueryListener

204 Interface QueryListener

If the server result is Event.RESULT_OK, then the server has destroyed the query otherwise
some unknow error occured.

In both cases:

the server does not accept any other operation on this query.⋅
the query status has changed to Query.STATUS_DESTROYED.⋅
it is a good practice to release the query associated to the event parameter.⋅

Parameters:
event − the server−answer to the Query.destroy()

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface SubscriptionListener

All Superinterfaces:
Listener

public interface SubscriptionListener
extends Listener

Interface to be implemented in order to handle the Subscription Lifecycle.

This interface is bound to subscriptions created by Context.makeSubscription().
It may be retrieved by CommunicationLifeCycle.getListener().

•

Method Summary

Methods

Modifier and
Type

Method and Description

void
onSubscriptionIdle(SubscriptionIdleEvent event)
Called when the flow of historical data is finished and the start of actual data is
starting.

void
onSubscriptionNotify(SubscriptionNotifyEvent event)
Called when an actual or historical data is available or when the server−answer of a
Subscription.refreshEntity is available.

void
onSubscriptionStart(SubscriptionStartEvent event)
Called when the server−answer to the Subscription.start() is available.

void
onSubscriptionStop(SubscriptionStopEvent event)
Called when the server−answer to the Subscription.stop() is available.

♦ •

Interface SubscriptionListener

Interface SubscriptionListener 205

mailto:ftapi@list-group.com

Method Detail

onSubscriptionStart

void onSubscriptionStart(SubscriptionStartEvent event)

Called when the server−answer to the Subscription.start() is available.

If the server result is Event.RESULT_OK,
then

the server has accepted the subscription.⋅
the subscription status has changed to Subscription.STATUS_STARTED.⋅
SubscriptionNotifyEvent and/or SubscriptionIdleEvent events will
be received.

⋅

otherwise

the server has rejected the subscription.⋅
the subscription status has changed to Subscription.STATUS_STOPPED.⋅
any SubscriptionNotifyEvent and/or SubscriptionIdleEvent events
will never been received.

⋅

In the latter case it is a good practice to release the subscription associated to the event
parameter.

Parameters:
event − the server−answer to the Subscription.start()

◊

onSubscriptionIdle

void onSubscriptionIdle(SubscriptionIdleEvent event)

Called when the flow of historical data is finished and the start of actual data is starting.

In this case:

the server result is always Event.RESULT_OK.⋅
the subscription status remains Subscription.STATUS_STARTED.⋅

This method is called only if the type of query of the subscription is not
SubscriptionParam.QUERY_TYPE_ON_TIME.

If the type of query of the subscription is SubscriptionParam.QUERY_TYPE_PAST
then it is a good practice to stop the subscription.

Parameters:
event − event marking stop/starting of historical/actual data coming from the server

◊

onSubscriptionNotify

void onSubscriptionNotify(SubscriptionNotifyEvent event)

Called when an actual or historical data is available or when the server−answer of a
Subscription.refreshEntity is available.

In this case:

◊

Interface SubscriptionListener

206 Interface SubscriptionListener

the server result is always Event.RESULT_OK.⋅
the subscription status remains Subscription.STATUS_STARTED.⋅
the data is available through the various SubscriptionNotifyEvent methods⋅

If this is the server−answer of a refreshEntity then the data available through
SubscriptionNotifyEvent.getEntity() is always complete even if the
subscription was opened in a masked fashion.

Parameters:
event − event containing actual/historical data

onSubscriptionStop

void onSubscriptionStop(SubscriptionStopEvent event)

Called when the server−answer to the Subscription.stop() is available.

If the server result is Event.RESULT_OK, then the server has closed the subscription
otherwise some unknow error occured.

In both cases:

the subscription status has changed to Subscription.STATUS_STOPPED.⋅
any SubscriptionNotifyEvent and/or SubscriptionIdleEvent events
will never been received.

⋅

it is a good practice to release the subscription associated to the event parameter.⋅

Parameters:
event − the server−answer to the Subscription.stop()

◊

♦ •

Submit a bug or feature to FT\API Programming Support

JavaScript is disabled on your browser.
it.list.jft.event

Interface TransactionListener

All Superinterfaces:
Listener

public interface TransactionListener
extends Listener

Interface to be implemented in order to handle the Transaction Lifecycle.

This interface is bound to transactions created by Context.makeTransaction().
It may be retrieved by CommunicationLifeCycle.getListener().

•

Method Summary

Methods

♦ •

Interface SubscriptionListener

Interface SubscriptionListener 207

mailto:ftapi@list-group.com

Modifier and Type Method and Description

void
onTransactionQuery(TransactionQueryEvent event)
Called when the server−answer to the
Transaction.query() is available.

void
onTransactionSend(TransactionSendEvent event)
Called when the server−answer to the
Transaction.send() is available.

Method Detail

onTransactionSend

void onTransactionSend(TransactionSendEvent event)

Called when the server−answer to the Transaction.send() is available.

Depending on the server result (that cannot never be equal to Event.RESULT_OK) the
transaction status changes to:

TransactionEvent.RESULT_FLYING ’ Transaction.STATUS_FLYING⋅
TransactionEvent.RESULT_COMMITTED ’
Transaction.STATUS_COMMITTED

⋅

TransactionEvent.RESULT_ABORTED ’
Transaction.STATUS_ABORTED
(in this case it is possible to get the reason code that caused the transaction to fail)

⋅

TransactionEvent.RESULT_INVALID_TRANSACTION_ID ’
Transaction.STATUS_ABORTED

⋅

Event.RESULT_GENERIC_ERROR ’ Transaction.STATUS_ABORTED⋅
If the current transaction status is TransactionEvent.RESULT_FLYING then the server
can accept calls to Transaction.query() otherwise it is a good practice to release
the transaction associated to the event parameter.

Parameters:
event − the server−answer to the Transaction.send()

◊

onTransactionQuery

void onTransactionQuery(TransactionQueryEvent event)

Called when the server−answer to the Transaction.query() is available.

Depending on the server result (that cannot never be equal to Event.RESULT_OK) the
transaction status changes to:

TransactionEvent.RESULT_FLYING ’ Transaction.STATUS_FLYING⋅
TransactionEvent.RESULT_COMMITTED ’
Transaction.STATUS_COMMITTED

⋅

TransactionEvent.RESULT_ABORTED ’
Transaction.STATUS_ABORTED
(in this case it is possible to get the reason code that caused the transaction to fail)

⋅

◊

♦ •

Interface TransactionListener

208 Interface TransactionListener

TransactionEvent.RESULT_INVALID_TRANSACTION_ID ’
Transaction.STATUS_ABORTED

⋅

Event.RESULT_GENERIC_ERROR ’ Transaction.STATUS_ABORTED⋅
If the current transaction status is TransactionEvent.RESULT_FLYING then the server
can accept other calls to Transaction.query() otherwise it is a good practice to
release the transaction associated to the event parameter.

Parameters:
event − the server−answer to the Transaction.query()

Submit a bug or feature to FT\API Programming Support

Interface TransactionListener

Interface TransactionListener 209

mailto:ftapi@list-group.com

Interface TransactionListener

210 Interface TransactionListener

JFT/Api Application Examples
In this chapter we present 3 applications examples that use JFT/Api:

Example 1
The first example is the simplest. It show how to create one single connection to a FastTrack MetaMarket
service and one single subscription to a given EntityClass. All received entities on this subscriptions are
written on standard output and then the application terminates.

The application is very simple and small: it does not handle any errors and/or exceptions and it does not make
any trace.

•

Example 2
The second example show how to create two distinct connections at the same FastTrack MetaMarket service.
Two subscriptions are opened on the first connection: these two subscriptions are a few complex because they
use Mask, partial keys and refreshEntity. Instead on the second connection many transactions will be started
and/or queried automatically.

•

Example 3
This very simple application example open a connection with a MetaMarket service using YAS service
manager, and then it subscribe the first position of the depth of some securities using EntityFilter.

•

See Also:
JFT/Api Introduction, JFT, JFT Exceptions, JFT Implementation Threads, JFT Synchronization

 JFT/Api Application Examples 211

Example 1

The first example is the simplest. It show how to create one single connection to a FastTrack MetaMarket service and
one single subscription to a given EntityClass. All received entities on this subscriptions are written on standard
output and then the application terminates.

The application is very simple and small: it does not handle any errors and/or exceptions and it does not make any
trace.

/*

Description
===========
 This application example open a connection with a MetaMarket service
 of a given FastTrack server and then it starts a subscription
 on FT_C_TRADING_STATE EntityClass.
 Every received Entity is written on standard output.
 The application terminates when a SubscriptionIdleEvent is received.

Example Usage
=============

 To compile this example remember to put in the classpath:
 − The path of JDK 1.1.x (or following)
 − The path of your library JFTApi.jar
 − The path of the directory where the metamarket package reside

 To launch this example type:
 java Example1

 To obtain something like:
 eID: HDAT mID: GR sID: Primary p: NOP s: Active pd: NOP t: 73049379
 eID: HDAT mID: GR sID: Repos p: NEG s: Active pd: NEG t: 80000057
 eID: HDAT mID: GR sID: Retail p: NEG s: Active pd: NEG t: 73049404
 eID: HDAT mID: GR sID: Secondary p: NEG s: Active pd: NEG t: 80000074
 eID: GAM mID: MOT sID: 1 p: NEG s: Active pd: t: 0
 eID: GAM mID: TON sID: 1 p: NEG s: Active pd: t: 0
 eID: GAM mID: MOT sID: 2 p: NEG s: Active pd: t: 0
 eID: GAM mID: TON sID: 2 p: NEG s: Active pd: t: 0
 eID: GAM mID: MOT sID: 3 p: NEG s: Active pd: t: 0
 eID: GAM mID: TON sID: 3 p: NEG s: Active pd: t: 0
 eID: GAM mID: MOT sID: 4 p: NEG s: Active pd: t: 0
 eID: GAM mID: TON sID: 4 p: NEG s: Active pd: t: 0

Additional Classes (in metamarket package)
==

 In order to profitably use this example there is need for some additional
 Java classes in the metamarket package. These classes are:
 − MetaMarket It contains global constants (entityClassIDs, keyIDs, etc...)
 for all data structures of FastTrack MetaMarket service.
 − FT_C_TRADING_STATE Specific EntityClass for the handled trading states.
 You can see below a skeleton of this class.
 − FT_C_TRADING_PHASE The various enumeration values for fields of FT_C_TRADING_STATE

*/

Example 1

212 Example 1

/*

MetaMarket
==========
 MetaMarket is the Java class that contains global constants
 for all data structures of FastTrack MetaMarket service.

 This class contains
 − a lot of constants (for all entytClassIDs, keyIDs, etc...)
 that may be used to access all data handled by MetaMarket service.
 − a method registerAll() that may be used to register all
 the EntityClasses of MetaMarket.

 In this example we use only 3 EntityClasses:
 FT_C_TRADING_STATE, FT_C_ORDER and FT_C_ERROR_INFO
 so the only used members of the class MetaMarket are:

 public static final int FT_C_TRADING_STATE_ID = 30010; // FT_C_TRADING_STATE id
 public static final int FT_C_TRADING_STATEKey = 1; // FT_C_TRADING_STATE prim. key
 public static void registerAll(); // to register all EntityClasses of MetaMarket

The FT_C_TRADING_STATE EntityClass
==================================
 Its entityClassID is FT_C_TRADING_STATE_ID = 30010.
 Its primary keyID is FT_C_TRADING_STATEKey = 1
 and it includes ExchangeID, MarketID and SectionID fields.
 Its structure is something like:

class FT_C_TRADING_STATE {
 String ExchangeID; // ID of the market place
 String MarketID; // ID of the market
 String SectionID; // ID of the section
 int Phase; // Phase of the security:

// 0 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_UNDEF
// 1 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_CLOSURE
// 2 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_ISSUE
// 3 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_ISSUE
// 4 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_AUCTION
// 5 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_AUCTION
// 6 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_AUCTION
// 7 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_TRADING
// 8 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING
// 9 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_TRADING
//10 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AT_LAST
//11 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AFTER_HOUR
//12 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_FAST_MARKET
//13 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_MANAGEMENT
//14 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_NO_OPERATION

 int Status; // Status of the section
// 0 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Active
// 1 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Suspended
// 2 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Frozen

 String PhaseDescription; // Description of phase
 int Time; // Time (format: HHMMSSmmm) of last change
}

*/

Example 1

Example 1 213

/*

The FT_C_TRADING_PHASE class
============================
 This java class is not an EntityClass.
 This class contains
 − all enumeration value for the trading phase,
 − a method enumAsString that returns a displayable String for a given value.
 Its structure is something like:

class FT_C_TRADING_PHASE {
 public static final int FT_C_TRADING_PHASE_UNDEF = 0;
 public static final int FT_C_TRADING_PHASE_CLOSURE = 1;
 public static final int FT_C_TRADING_PHASE_PRE_ISSUE = 2;
 public static final int FT_C_TRADING_PHASE_ISSUE = 3;
 public static final int FT_C_TRADING_PHASE_PRE_AUCTION = 4;
 public static final int FT_C_TRADING_PHASE_AUCTION = 5;
 public static final int FT_C_TRADING_PHASE_POST_AUCTION = 6;
 public static final int FT_C_TRADING_PHASE_PRE_TRADING = 7;
 public static final int FT_C_TRADING_PHASE_TRADING = 8;
 public static final int FT_C_TRADING_PHASE_POST_TRADING = 9;
 public static final int FT_C_TRADING_PHASE_TRADING_AT_LAST = 10;
 public static final int FT_C_TRADING_PHASE_TRADING_AFTER_HOUR = 11;
 public static final int FT_C_TRADING_PHASE_FAST_MARKET = 12;
 public static final int FT_C_TRADING_PHASE_MANAGEMENT = 13;
 public static final int FT_C_TRADING_PHASE_NO_OPERATION = 14;

 public static final String enumAsString(int value) { return "an appropriate value"; }
}

*/

// Effective source−code Example1 starts here.

import it.list.jft.*; // to use the JFT/Api library
import it.list.jft.event.*; // to use the JFT/Api library
import metamarket.*; // to use MetaMarket, FT_C_TRADING_STATE, etc...

abstract class Example1 {
static final int clientID = 67899;
static final String dirPath = ".";
static final String myOperatorID = "dario";
static final String myOperatorPass = "*";
static final String host = "194.91.195.234";
static final int port = 41005;
static Context context;

 public static void main(String[]args) {
 JFT.THIS.init(JFT.MODE_MULTI_THREAD);

 if(true)
 JFT.THIS.register(new FT_C_TRADING_STATE());

 else // as an expensive alternative
 MetaMarket.registerAll();
 JFT.THIS.start();
 context = JFT.THIS.makeContext();

new ConnectionEx();
 }
}

Example 1

214 Example 1

// Class to handle the connection.

class ConnectionEx implements ConnectionListener {

final Connection connection;

ConnectionEx() {
 ConnectionParam cp = Example1.context.makeConnectionParam();
 cp.setHost(Example1.host);
 cp.setPort(Example1.port);
 cp.setApplRevision(new int[]{0,0,0});
 cp.setApplSignature(12345);
 cp.setClientID(Example1.clientID);
 cp.setConnType(ConnectionParam.CONN_TYPE_TCP);
 cp.setUserName(Example1.myOperatorID);
 cp.setPassword(Example1.myOperatorPass);
 cp.setUserType(ConnectionParam.USER_TYPE_VIEW);
 connection = Example1.context.makeConnection(cp, this);

 if(connection.open() != Connection.RESULT_OK)
 connection.release(); // good practice
 }

 public void onConnectionOpen(ConnectionOpenEvent ev) {
 if(ev.getResult() == ev.RESULT_OK)

new SubscriptionEx(connection);
 else

 connection.release(); // good practice
 }

 public void onConnectionClose(ConnectionCloseEvent ev) {
 connection.release(); // good practice
 }

 public void onConnectionLost(ConnectionLostEvent ev) {
 connection.release(); // good practice
 }
}

Example 1

Example 1 215

// Class to handle the subscription.

class SubscriptionEx implements SubscriptionListener {

final Subscription subscription;
final Connection connection;

SubscriptionEx(Connection conn) {
 connection = conn;
 SubscriptionParam sp = Example1.context.makeSubscriptionParam();
 sp.setEntityClassID(MetaMarket.FT_C_TRADING_STATE_ID);
 subscription = Example1.context.makeSubscription(connection, sp, this);

 if(subscription.start() != Subscription.RESULT_OK)
 subscription.release(); // good practice
 }

 public void onSubscriptionStart(SubscriptionStartEvent ev){
 if(ev.getResult() != ev.RESULT_OK)

 subscription.release(); // good practice
 }

 public void onSubscriptionIdle(SubscriptionIdleEvent ev){
 if(true)

 JFT.THIS.release();
 else { // as an expensive alternative

 subscription.stop();
 subscription.release(); // good practice
 connection.close();
 connection.release(); // good practice
 JFT.THIS.release();
 }
 }

 public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
 switch(ev.getAction()) {
 case SubscriptionNotifyEvent.ACTION_ENTITY_ADD:

 System.out.println(entityAsString(ev.getEntity()));
 break;

 case SubscriptionNotifyEvent.ACTION_ENTITY_RWT:
 case SubscriptionNotifyEvent.ACTION_ENTITY_DEL:
 case SubscriptionNotifyEvent.ACTION_ENTITY_KIL:
 default:

 break;
 }
 }

 public void onSubscriptionStop(SubscriptionStopEvent ev){
 subscription.release(); // good practice
 }

 String entityAsString(Entity e) {
 FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) e;

 return "eID: " + ts.ExchangeID
 + " mID: " + ts.MarketID
 + " sID: " + ts.SectionID
 + " p: " + FT_C_TRADING_PHASE.enumAsString(ts.Phase)
 + " s: " + FT_C_TRADING_STATUS.enumAsString(ts.Status)
 + " pd: " + ts.PhaseDescription
 + " t: " + ts.Time;
 }
}

Example 1

216 Example 1

Example 2

The second example show how to create two distinct connections at the same FastTrack MetaMarket service. Two
subscriptions are opened on the first connection: these two subscriptions are a few complex because they use Mask,
partial keys and refreshEntity. Instead on the second connection many transactions will be started and/or queried
automatically.

This example is more complex even because it handles and trace errors and exceptions in a sophisticated way. In
addition all LifeCycle activities are handled at two levels: at the higher level all errors and common actions are
handled, at the lower level the specific actions for the specific activity is taken.

/*

Description
===========
 This application example open two connections with a MetaMarket service
 of a given FastTrack server, and then:

 − Two subscriptions will be started on the first connection:
 − The first one is a non masked subscription
 on FT_C_ORDER EntityClass:
 − All received entities will be written on standard output.
 − All received entities matching a given operator will be written on files.
 This subscription is never stopped.
 − The second one is a partial and masked subscription
 on FT_C_TRADING_STATE EntityClass:
 − Only the ExchangeID and Phase fields
 are subscribed and written on standard output when received.
 − In addition many refreshEntity will be requested for each received
 entity with Phase field that matches a given phase.
 This is done in order to discover and print all fields of these entities.
 This subscription is close when all received non masked entities
 match the corresponding requested refreshEntity.

 − All files *.order and *.order.pending of a given directory are listed.
 Each *.order file contains all 14 mandatory fields of FT_C_ORDER EntityClass.
 Foreach *.order file (if there is not a corresponding *.order.pending file)
 a transaction is sent to the server in order to add a FT_C_ORDER.
 Once the transaction is sent its TransactionID is stored
 on a corresponding *.order.pending file and this file remains untouched
 until the transaction is committed or aborted.
 Once the transaction is sent and it's still flying the command−line option "−x"
 controls if the transaction must be immediately queried for its status
 or if this query must be postponed to the next run of this application.
 Foreach *.order file that is couple with a corresponding *.order.pending file
 a query for the pending transaction is sent to the server in order
 to discover if it is still pending or else it is committed or aborted.
 In the first case the application retry the query after a while.
 In the two latter cases the file *.order.pending is renamed *.order.done.blabla
 because the corresponding transaction is finished.
 There are convenient command−line options to control the delay between
 two subsequents queries and two subsequents scan of *.order files.

 The application terminates when all *.order files are been analyzed.
 Please note that this may happens before the two subscriptions terminate
 the print of their historical data: i.e. not all data may been received.

*/

Example 2

Example 2 217

/*

Example Usage
=============

 To compile this example remember to put in the classpath:
 − The path of JDK 1.4.x (or following)
 − The path of your library JFTApi.jar
 − The path of the directory where the metamarket package reside

 To launch this example type:
 java Example2 options...
 where options are: [−h host] # FastTrack server TCP/IP host
 [−p port] # FastTrack server TCP/IP port
 [−n serviceName] # FastTrack service name
 [−o opName] # operator's name
 [−w opPassword] # operator's password
 [−l licPathName] # license file pathname
 [−d dirPathName] # directory with xxx.order[.pending] files
 [−t traceLevel] # 0<= traceLevel <= 5
 [−v ON/OFF] # trace verbose
 [−s scanDelay] # scan delay (in seconds)
 [−q queryDelay] # query delay (in seconds)
 [−x ON/OFF] # request to make a query after a send
 E.g.:
 java Example2 −h 194.91.195.1 −p 1234 −o dario −w dario −d c:\tmp −s 5 −q 15 −x ON
 requests
 − to talk with FastTrack server on host 194.91.195.1 and port 1234.
 − without specifying any service name (there is no "−n ..." option).
 − with operator name and password both equals to dario.
 − not using any license file (there is no "−l ..." option).
 − listing the directory C:\tmp.
 − using the default trace level TRACE_LEVEL_FATAL=5 (there is no "−t ..." option).
 − using the default non verbose trace (there is no "−v ..." option).
 − reading a new *.order and/or *.order.pending file every 5 seconds:
 i.e. every 5 seconds a send (if there is not a *.order.pending file)
 or a query (if there is a *.order.pending file)
 will be sent to the server.
 − re−sending other query for the same transaction 15 seconds
 after a preceding flying (i.e. no commit and no abort) result.
 − requesting to automatically send a query after a send.

Additional Classes (in metamarket package)
==

 In order to profitably use this example there is need for some additional
 Java classes in the metamarket package. These classes are:
 − MetaMarket It contains global constants (entityClassIDs, keyIDs, etc...)
 for all data structures of FastTrack MetaMarket service.
 − FT_C_ORDER Specific EntityClass for orders handled by MetaMarket.
 You can see below a skeleton of this class.
 − FT_C_TRADING_STATE Specific EntityClass for the handled trading states.
 You can see below a skeleton of this class.
 − FT_C_ERROR_INFO Specific EntityClass for the transaction errors communications
 between the server and the application.
 − FT_C_TRADING_PHASE The various enumeration values for fields of FT_C_TRADING_STATE
 etc...

*/

Example 2

218 Example 2

/*

MetaMarket
==========
 MetaMarket is the Java class that contains global constants
 for all data structures of FastTrack MetaMarket service.

 This class contains
 − a lot of constants (for all entytClassIDs, keyIDs, etc...)
 that may be used to access all data handled by MetaMarket service.
 − a method registerAll() that may be used to register all
 the EntityClasses of MetaMarket.

 In this example we use only 3 EntityClasses:
 FT_C_TRADING_STATE, FT_C_ORDER and FT_C_ERROR_INFO
 so the only used members of the class MetaMarket are:

 public static final int FT_C_TRADING_STATE_ID = 30010; // FT_C_TRADING_STATE id
 public static final int FT_C_TRADING_STATEKey = 1; // FT_C_TRADING_STATE prim. key
 public static final int FT_C_ORDER_ID = 30014; // FT_C_ORDER id
 public static final int FT_C_ORDERKey = 1; // FT_C_ORDER primary key
 public static void registerAll(); // to register all EntityClasses of MetaMarket

The FT_C_TRADING_STATE EntityClass
==================================
 Its entityClassID is FT_C_TRADING_STATE_ID = 30010.
 Its primary keyID is FT_C_TRADING_STATEKey = 1
 and it includes ExchangeID, MarketID and SectionID fields.
 Its structure is something like:

class FT_C_TRADING_STATE {
 String ExchangeID; // ID of the market place
 String MarketID; // ID of the market
 String SectionID; // ID of the section
 int Phase; // Phase of the security:

// 0 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_UNDEF
// 1 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_CLOSURE
// 2 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_ISSUE
// 3 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_ISSUE
// 4 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_AUCTION
// 5 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_AUCTION
// 6 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_AUCTION
// 7 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_PRE_TRADING
// 8 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING
// 9 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_POST_TRADING
//10 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AT_LAST
//11 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_TRADING_AFTER_HOUR
//12 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_FAST_MARKET
//13 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_MANAGEMENT
//14 or FT_C_TRADING_PHASE.FT_C_TRADING_PHASE_NO_OPERATION

 int Status; // Status of the section
// 0 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Active
// 1 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Suspended
// 2 or FT_C_TRADING_STATUS.FT_C_TRADING_STATUS_Frozen

 String PhaseDescription; // Description of phase
 int Time; // Time (format: HHMMSSmmm) of last change
}

*/

Example 2

Example 2 219

/*

The FT_C_ORDER EntityClass
==========================
 Its entityClassID is FT_C_ORDER_ID = 30014.
 Its primary keyID is FT_C_ORDERKey = 1
 and it includes FTSecID and OrderID fields.
 Its structure is something like:

class FT_C_ORDER {
 String FTSecID; // ID of the security
 String OrderID; // ID of the order given by the market
 String OperatorID; // Operator ID
 String MrkOperatorID; // ID of the operator on the destination market
 int Verb; // Verb of the order:

// 0 or FT_C_VERB.FT_C_VERB_Buy
// 1 or FT_C_VERB.FT_C_VERB_Sell

 int OrderType; // Type of the order
// 0 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Limit
// 1 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Market
// 2 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Market_to_limit
// 3 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Stop_market
// 4 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_OpeningPrice
// 5 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Stop_limit
// 6 or FT_C_ORDER_TYPE.FT_C_ORDER_TYPE_Subscription

 int QtyParameter; // Parameter to choose if the whole quantity of the
// quantity must be matched at the same time
// 0 or FT_C_QTY_PARAMETER.FT_C_QTY_PARAMETER_Default
// 1 or FT_C_QTY_PARAMETER.FT_C_QTY_PARAMETER_All_or_None

 int TimeInForce; // Parameter to determine the life of the order
// 0 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Default
// 1 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Day
// 2 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Date
// 3 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Cancel
// 4 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Immediate_or_Cancel
// 5 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Maturity
// 6 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Good_till_Hour
// 7 or FT_C_TIMEINFORCE.FT_C_TIMEINFORCE_Cancel_after_Filled

 int ValidityDate; // Date (format: AAAAMMDD) of the end of the order's validity
 int Status; // Status of the order

// 0 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Active
// 1 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_PartFilled
// 2 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_CompFilled
// 3 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Cancelled
// 4 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Suspended
// 5 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_CancelledByGov
// 6 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Stopped
// 7 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Submitted
// 8 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_Rejected
// 9 or FT_C_ORDER_STATUS.FT_C_ORDER_STATUS_DeletedByEdit

 double Price; // Limit price of the order
 double Qty; // Quantity of the order
 double StopPrice; // Price that triggers a stop order
 int TriggerMechanism;// Activaction rule for stop orders

// 0 or FT_C_STOP_TRIGGER_MECHANISM
// .FT_C_STOP_TRIGGER_MECHANISM_BestPrice
// 1 or FT_C_STOP_TRIGGER_MECHANISM
// .FT_C_STOP_TRIGGER_MECHANISM_LastPrice

}

*/

Example 2

220 Example 2

/*

The FT_C_ERROR_INFO EntityClass
===============================
 Its entityClassID is FT_C_ERROR_INFO_ID = 30050.
 It does not have any key.
 Its structure is something like:

class FT_C_ERROR_INFO {
 int ReasonCode;
 String ErrorString;
}

The FT_C_TRADING_PHASE class
============================
 This java class is not an EntityClass.
 This class contains
 − all enumeration value for the trading phase,
 − a method enumAsString that returns a displayable String for a given value.
 Its structure is something like:

class FT_C_TRADING_PHASE {
 public static final int FT_C_TRADING_PHASE_UNDEF = 0;
 public static final int FT_C_TRADING_PHASE_CLOSURE = 1;
 public static final int FT_C_TRADING_PHASE_PRE_ISSUE = 2;
 public static final int FT_C_TRADING_PHASE_ISSUE = 3;
 public static final int FT_C_TRADING_PHASE_PRE_AUCTION = 4;
 public static final int FT_C_TRADING_PHASE_AUCTION = 5;
 public static final int FT_C_TRADING_PHASE_POST_AUCTION = 6;
 public static final int FT_C_TRADING_PHASE_PRE_TRADING = 7;
 public static final int FT_C_TRADING_PHASE_TRADING = 8;
 public static final int FT_C_TRADING_PHASE_POST_TRADING = 9;
 public static final int FT_C_TRADING_PHASE_TRADING_AT_LAST = 10;
 public static final int FT_C_TRADING_PHASE_TRADING_AFTER_HOUR = 11;
 public static final int FT_C_TRADING_PHASE_FAST_MARKET = 12;
 public static final int FT_C_TRADING_PHASE_MANAGEMENT = 13;
 public static final int FT_C_TRADING_PHASE_NO_OPERATION = 14;

 public static final String enumAsString(int value) { return "an appropriate value"; }
}

*/

Example 2

Example 2 221

// Effective source−code Example2 starts here.

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.io.FileOutputStream;
import java.io.FilenameFilter;
import java.io.BufferedReader;
import java.io.PrintWriter;
import java.io.FileReader;
import java.io.File;
import it.list.jft.*; // to use the JFT/Api library
import it.list.jft.event.*; // to use the JFT/Api library
import metamarket.*; // to use MetaMarket, FT_C_ORDER, FT_C_TRADING_STATE, etc...

class Example2 extends UtilityExample implements Runnable {

static final String O_SUFFIX = ".order";
static final String O_SUFFIX_READ = O_SUFFIX + ".read";
static final String T_SUFFIX = ".pending";
static final String T_SUFFIX_DONE = ".done." + System.currentTimeMillis();
static final String EXCHANGE_ID = "HDAT";
static final int SUBS_CLIENT_ID = 67890;
static final int TRANS_CLIENT_ID= 67891;
static final int PHASE_TRADING = FT_C_TRADING_PHASE.

 FT_C_TRADING_PHASE_TRADING;
static final ThreadGroup THREAD_GROUP = new ThreadGroupExample();
static String licPath = null;
static String dirPath = "c:\\";
static String myOperatorID = "dario";
static String myOperatorPass = "*";
static String host = "metamarket.fasttrack.com";
static String service = null;
static int port = 1234;
static int delayScanSecs = 10;
static int delayQuerySecs = 3;
static int traceLevel = JFT.TRACE_LEVEL_FATAL;
static boolean queryAfterSend = false;
static boolean verbose = false;
static Context context = null;

Example 2

222 Example 2

 public static void main(String[]args) {
 handleArgs(args);

new Thread(THREAD_GROUP, new Example2(), "main").start();
 }

 public void run() {
 JFT.THIS.init(JFT.MODE_MULTI_THREAD);
 JFT.THIS.setTrace(true);
 JFT.THIS.setTraceLevel(traceLevel);
 JFT.THIS.setTraceMode(this);

 if(true) {
 JFT.THIS.register(new FT_C_ORDER());
 JFT.THIS.register(new FT_C_TRADING_STATE());
 JFT.THIS.register(new FT_C_ERROR_INFO());
 } else // as an expensive alternative
 MetaMarket.registerAll();
 JFT.THIS.start();
 context = JFT.THIS.makeContext();

new ConnectionForSubscriptions();
new ConnectionForTransactions();

 }

// Just a remind on usage...

static void usage() {
final String[]usage=

 {"Usage: java Example options...",
"options: [−h host] # FastTrack server TCP/IP host",
" [−p port] # FastTrack server TCP/IP port",
" [−n serviceName] # FastTrack service name",
" [−o opName] # operator's name",
" [−w opPassword] # operator's password",
" [−l licPathName] # license file pathname",
" [−d dirPathName] # directory with xxx.order[.trans] files",
" [−t traceLevel] # 0 <= traceLevel <= 5",
" [−v ON/OFF] # trace verbose",
" [−s scanDelay] # scan delay (in seconds)",
" [−q queryDelay] # query delay (in seconds)",
" [−x ON/OFF] # request to make a query after a send"};

 for(int i=0; i<usage.length; i++)
 System.out.println(usage[i]);
 System.exit(0);
 }

Example 2

Example 2 223

// Parse command−line options.

static void handleArgs(String[]args) {
 try {

 for(int i=0; i<args.length; i+=2)
 if(args[i].equals("−h"))

 host = args[i+1];
 else if(args[i].equals("−p"))

 port = Integer.parseInt(args[i+1]);
 else if(args[i].equals("−n"))

 service = args[i+1];
 else if(args[i].equals("−o"))

 myOperatorID = args[i+1];
 else if(args[i].equals("−w"))

 myOperatorPass = args[i+1];
 else if(args[i].equals("−l"))

 licPath = args[i+1];
 else if(args[i].equals("−t"))

 traceLevel = Integer.parseInt(args[i+1]);
 else if(args[i].equals("−d"))

 dirPath = args[i+1];
 else if(args[i].equals("−v"))

 verbose = args[i+1].compareToIgnoreCase("ON") == 0;
 else if(args[i].equals("−s"))

 delayScanSecs = Integer.parseInt(args[i+1]);
 else if(args[i].equals("−q"))

 delayQuerySecs = Integer.parseInt(args[i+1]);
 else if(args[i].equals("−x"))

 queryAfterSend = args[i+1].compareToIgnoreCase("ON") == 0;
 else

 throw new IllegalArgumentException();
 if(args.length == 0

 || host.length() == 0
 || port <= 0
 || service != null && service.length() == 0
 || myOperatorID.length() == 0
 || myOperatorPass.length() == 0
 || traceLevel < JFT.TRACE_LEVEL_DEBUG
 || traceLevel > JFT.TRACE_LEVEL_FATAL
 || licPath != null && ! new File(licPath).canRead()
 || ! new File(dirPath).isDirectory()
 || delayScanSecs < 0
 || delayQuerySecs < 0)

 throw new IllegalArgumentException();
 } catch(Exception e) {
 usage();
 }
 }
}

Example 2

224 Example 2

// Common superclass for all connections.

abstract class ConnectionExample extends UtilityExample
 implements ConnectionListener {

final Connection connection;

ConnectionExample(int connectionUserType, int clientID) {
 ConnectionParam cp = Example2.context.makeConnectionParam();
 cp.setHost(Example2.host);
 cp.setPort(Example2.port);
 cp.setService(Example2.service);
 cp.setApplRevision(new int[]{0,0,0});
 cp.setApplSignature(12345);
 cp.setAuthFile(Example2.licPath == null ? null : new File(Example2.licPath));
 cp.setClientID(clientID);
 cp.setConnType(ConnectionParam.CONN_TYPE_TCP);
 cp.setUserName(Example2.myOperatorID);
 cp.setPassword(Example2.myOperatorPass);
 cp.setUserType(connectionUserType);
 connection = Example2.context.makeConnection(cp, this);

int res = connection.open();
 trace(res);

 if(res != Connection.RESULT_OK)
 connection.release(); // good practice
 }

 public void onConnectionOpen(ConnectionOpenEvent ev) {
int res = ev.getResult();

 trace(res);
 if(res == ev.RESULT_OK) {

int[]mrkRev = ev.getMarketRevision();
 trace("csID: " + ev.getClientServiceID() + " bsID: " + ev.getBusinessServiceID()
 + " date: " + UtilityExample.sdf.format(ev.getSystemDateTime())
 + " FTID: " + ev.getFTID() + " env: " + ev.getEnvironment()
 + " mrkRev: " + mrkRev[0] + "." + mrkRev[1] + "." + mrkRev[2]);
 } else
 connection.release(); // good practice
 }

 public void onConnectionClose(ConnectionCloseEvent ev) {
 trace(ev.getResult());
 connection.release(); // good practice
 }

 public void onConnectionLost(ConnectionLostEvent ev) {
 trace(ev.getResult());
 connection.release(); // good practice
 }
}

Example 2

Example 2 225

// A specific connection: it handles many subscriptions.

class ConnectionForSubscriptions extends ConnectionExample {

ConnectionForSubscriptions() {
 super(ConnectionParam.USER_TYPE_VIEW, Example2.SUBS_CLIENT_ID);

 }

 public void onConnectionOpen(ConnectionOpenEvent ev) {
 super.onConnectionOpen(ev); // call the overridden method

 if(ev.getResult() == ev.RESULT_OK) {
new SubscriptionOrder(connection);
new SubscriptionTradingState(connection);

 }
 }
}

Example 2

226 Example 2

// Common superclass for all subscriptions.

abstract class SubscriptionExample extends UtilityExample
 implements SubscriptionListener {

final Subscription subscription;

SubscriptionExample(Connection connection) {
 subscription = Example2.context.makeSubscription(connection,
 makeSubscriptionParam(), this);

int res = subscription.start();
 trace(res);

 if(res != Subscription.RESULT_OK)
 subscription.release(); // good practice
 }

abstract SubscriptionParam makeSubscriptionParam();

abstract String entityAsString(Entity e);

 public void onSubscriptionStart(SubscriptionStartEvent ev){
 trace("Result=" + ev.getResult() +
 (ev.getResult() == ev.RESULT_OK ?

" version: " + ev.getEntityClassVersionOnServer() +
" reset: " + ev.isEntityClassReset() : ""));

 if(ev.getResult() != ev.RESULT_OK)
 subscription.release(); // good practice
 }

 public void onSubscriptionIdle(SubscriptionIdleEvent ev){
 trace(ev.getResult());
 }

 public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
 switch(ev.getAction()) {
 case SubscriptionNotifyEvent.ACTION_ENTITY_ADD:
 case SubscriptionNotifyEvent.ACTION_ENTITY_RWT:

 trace((ev.getAction() == ev.ACTION_ENTITY_ADD ? "ADD" : "RWT")
 + " Masked: " + ev.isMasked() + " " + entityAsString(ev.getEntity()));

 break;
 case SubscriptionNotifyEvent.ACTION_ENTITY_DEL:

 trace("DEL KeyID: " + ev.getKeyID());
 break;

 case SubscriptionNotifyEvent.ACTION_ENTITY_KIL:
 if(ev.getKeyID() <= 0)

 trace("KIL ClassReset − New Version: " + ev.getTimeStamp().getDateTime());
 else

 trace("KIL KeyID: " + ev.getKeyID());
 break;

 }
 }

 public void onSubscriptionStop(SubscriptionStopEvent ev){
 trace(ev.getResult());
 subscription.release(); // good practice
 }
}

Example 2

Example 2 227

// A specific subscription: it handles FT_C_ORDER.

class SubscriptionOrder extends SubscriptionExample {

SubscriptionOrder(Connection connection) {
 super(connection);

 }

 SubscriptionParam makeSubscriptionParam() {
 SubscriptionParam sp = Example2.context.makeSubscriptionParam();
 sp.setEntityClassID(MetaMarket.FT_C_ORDER_ID);

 return sp;
 }

 String entityAsString(Entity e) {
 FT_C_ORDER o = (FT_C_ORDER) e;

 return (o.OperatorID.equals(Example2.myOperatorID) ? "" : "NO_OWNER")
 + " OrderID: " + o.OrderID
 + " FTSecID: " + o.FTSecID
 + " OperatorID: " + o.OperatorID
 + " Price: " + o.Price
 + " Qty: " + o.Qty
 + " Verb: " + FT_C_VERB.enumAsString(o.Verb)
 + " ValidityDate: " + o.ValidityDate;
 }

 public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
 super.onSubscriptionNotify(ev); // call the overridden method
 FT_C_ORDER o = (FT_C_ORDER) ev.getEntity();

 if(! o.OperatorID.equals(Example2.myOperatorID))
 writeOrder(o);
 }

void writeOrder(FT_C_ORDER o) {
 PrintWriter pw = null;

 try {
 pw = new PrintWriter(new FileOutputStream(new File(
 Example2.dirPath, o.FTSecID + Example2.O_SUFFIX_READ)));
 pw.println(o.FTSecID);
 pw.println(o.OrderID);
 pw.println(o.OperatorID);
 pw.println(o.MrkOperatorID);
 pw.println(o.Verb);
 pw.println(o.OrderType);
 pw.println(o.QtyParameter);
 pw.println(o.TimeInForce);
 pw.println(o.ValidityDate);
 pw.println(o.Status);
 pw.println(o.Price);
 pw.println(o.Qty);
 pw.println(o.StopPrice);
 pw.println(o.TriggerMechanism);
 trace("order file written.");
 } catch(Exception e) {
 trace(e);
 } finally {

 try {pw.close();} catch(Exception e) {}
 }
 }
}

Example 2

228 Example 2

// Another specific subscription: it handles FT_C_TRADING_STATE.

class SubscriptionTradingState extends SubscriptionExample {

int counter; // count the # of refreshEntity requested

SubscriptionTradingState(Connection connection) {
 super(connection);

 }

 SubscriptionParam makeSubscriptionParam() {
 Mask m = JFT.THIS.makeEmptyMask(MetaMarket.FT_C_TRADING_STATE_ID);
 m.addFieldByName("ExchangeID"); // primary key field
 m.addFieldByName("MarketID"); // primary key field
 m.addFieldByName("SectionID"); // primary key field
 m.addFieldByName("Phase"); // what I'm searching!
 SubscriptionParam sp = Example2.context.makeSubscriptionParam();
 sp.setEntityClassID(MetaMarket.FT_C_TRADING_STATE_ID);
 sp.setMask(m);
 sp.setQueryType(sp.QUERY_TYPE_SET);
 FT_C_TRADING_STATE ts = new FT_C_TRADING_STATE();
 ts.ExchangeID = Example2.EXCHANGE_ID;
 sp.setEntityKey(ts.getPartialEntityKey(MetaMarket.FT_C_TRADING_STATEKey, 1));

 return sp;
 }

 String entityAsString(Entity e) {
 FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) e;

 return "ExchangeID: " + ts.ExchangeID // in mask and partial key subscribed
 + " MarketID: " + ts.MarketID // in mask
 + " SectionID: " + ts.SectionID // in mask
 + " Phase: " + FT_C_TRADING_PHASE.enumAsString(ts.Phase)// in mask
 + " Status: " + FT_C_TRADING_STATUS.enumAsString(ts.Status)
 + " PhaseDesc: " + ts.PhaseDescription
 + " Time: " + ts.Time;
 }

 public void onSubscriptionIdle(SubscriptionIdleEvent ev){
 super.onSubscriptionIdle(ev); // call the overridden method
 checkStop();
 }

 public void onSubscriptionNotify(SubscriptionNotifyEvent ev){
 super.onSubscriptionNotify(ev); // call the overridden method

 if(ev.isMasked()) {
 FT_C_TRADING_STATE ts = (FT_C_TRADING_STATE) ev.getEntity();

 if(ts.Phase == Example2.PHASE_TRADING) {
int res = subscription.refreshEntity(ts.getFullEntityKey(ev.getKeyID()));

 trace(res);
 if(res == subscription.RESULT_OK)

 counter++;
 }
 } else {
 counter−−;
 checkStop();
 }
 }

Example 2

Example 2 229

void checkStop() {
 if(counter <= 0) { // Now I'm no more interested in this subscription

int res = subscription.stop();
 trace(res);
 subscription.release(); // good practice
 }
 }
}

// Another specific connection: it handles many transactions.

class ConnectionForTransactions extends ConnectionExample
 implements FilenameFilter, Runnable{

 String[]files;

ConnectionForTransactions() {
 super(ConnectionParam.USER_TYPE_TRADER, Example2.TRANS_CLIENT_ID);

 }

 public void onConnectionOpen(ConnectionOpenEvent ev) {
 super.onConnectionOpen(ev); // call the overridden method

 if(ev.getResult() == ev.RESULT_OK) {
 files = new File(Example2.dirPath).list(this);

int n = (files == null) ? 0 : files.length;
 trace(n + " orders to be sent or monitored");

 if(n > 1)
 Arrays.sort(files);

new Thread(Example2.THREAD_GROUP, this, "listing").start();
 }
 }

 public boolean accept(File dir, String name) {
 return name.endsWith(Example2.O_SUFFIX) && ! name.startsWith(Example2.O_SUFFIX);

 }

 public void run() {
 sleep(Example2.delayScanSecs);

 if(files != null)
 for(int i=0; i<files.length; i++)

 try {
 String filename = files[i] + Example2.T_SUFFIX;
 File f = new File(Example2.dirPath, filename);

 if(f.canRead()) {
 trace("analyzing file " + filename + ": pending trans. to be monitored");

new TransactionPending(connection, files[i]);
 } else {
 trace("analyzing file " + files[i] + ": new transaction to be created");

new TransactionNew(connection, files[i]);
 }
 sleep(Example2.delayScanSecs);
 } catch(Exception e) {
 trace(i + " −> " + e);
 }
 JFT.THIS.release();
 trace("JFT library released −> application going to die");

// no need to explicitly call System.exit() here !
 }
}

Example 2

230 Example 2

// Common superclass for all transactions.

abstract class TransactionExample extends UtilityExample
 implements TransactionListener, Runnable {

final Transaction transaction;
final String filename;

int counter;

TransactionExample(Connection connection, String f) {
 super(f);

 filename = f;
 transaction = Example2.context.makeTransaction(connection,
 makeTransactionParam(), this);
 tidWrite();
 }

abstract TransactionParam makeTransactionParam();

 String reasonAsString(TransactionEvent ev) {
int reason = ev.getReasonCode();

 FT_C_ERROR_INFO ei = (FT_C_ERROR_INFO) ev.getEntity();
 return reason == 0 ? "" :

 (" reason: " + reason + (ei == null ? "" : " −> " + ei.ErrorString));
 }

void onTransaction(TransactionEvent ev, String whoami) {
int st = transaction.getStatus();

 trace(whoami
 + ev.getResult()
 + (st == transaction.STATUS_FLYING ? " FLYING"
 : (st == transaction.STATUS_ABORTED ? " ABORTED"
 : (st == transaction.STATUS_COMMITTED ? " COMMITTED" : " " + st)))
 + reasonAsString(ev));

 if(st == transaction.STATUS_FLYING)
 if(Example2.queryAfterSend)

 queryDelayed();
 else

 transaction.release(); // Now I'm no more interested in this transaction
 else

 destroy();
 }

 public void onTransactionSend(TransactionSendEvent ev) {
 onTransaction(ev, "onTransactionSend −> ");
 }

 public void onTransactionQuery(TransactionQueryEvent ev) {
 onTransaction(ev, "onTransactionQuery −> ");
 }

void destroy() {
 tidRemove();
 transaction.release(); // Now I'm no more interested in this transaction
 }

void query() {
int res = transaction.query();

 trace(res);
 if(res != transaction.RESULT_OK)

 destroy();
 }

Example 2

Example 2 231

void queryDelayed() {
new Thread(Example2.THREAD_GROUP, this,

"query " + (++counter) + " on " + filename).start();
 }

 TransactionID tidRead() {
 BufferedReader in = null;

 try {
 in = new BufferedReader(new FileReader(new File(Example2.dirPath,
 filename + Example2.T_SUFFIX)));
 TransactionID tid = JFT.THIS.makeTransactionID(
 Integer.parseInt(in.readLine()),
 Integer.parseInt(in.readLine()),
 Integer.parseInt(in.readLine()),
 JFT.THIS.makeTimeStamp(Integer.parseInt(in.readLine()),
 Integer.parseInt(in.readLine())));
 trace("transaction file read.");

 return tid;
 } catch(Exception e) {
 trace(e);

 return null;
 } finally {

 try {in.close();} catch(Exception e) {}
 }
 }

void tidWrite() {
 TransactionID tid = transaction.getTransactionID();
 PrintWriter pw = null;

 try {
 pw = new PrintWriter(new FileOutputStream(new File(Example2.dirPath,
 filename+Example2.T_SUFFIX)));
 pw.println(tid.getClientID());
 pw.println(tid.getClientServiceID());
 pw.println(tid.getBusinessServiceID());
 pw.println(tid.getTimeStamp().getDateTime());
 pw.println(tid.getTimeStamp().getProg());
 trace("transaction file written.");
 } catch(Exception e) {
 trace(e);
 } finally {

 try {pw.close();} catch(Exception e) {}
 }
 }

void tidRemove() {
 File oldF = new File(Example2.dirPath, filename + Example2.T_SUFFIX);
 File newF = new File(Example2.dirPath, filename + Example2.T_SUFFIX_DONE);

 boolean ok = oldF.renameTo(newF);
 trace("transaction file renamed: " + ok);
 }

 public void run(){
 try {

 sleep(Example2.delayQuerySecs);
 query();
 } catch(Exception e) {
 trace(e);
 }
 }
}

Example 2

232 Example 2

class TransactionNew extends TransactionExample { // specific new transaction

TransactionNew(Connection connection, String f) {
 super(connection, f);

int res = transaction.send();
 trace(res);

 if(res != transaction.RESULT_OK)
 destroy();
 }

 TransactionParam makeTransactionParam() {
 TransactionParam tp = Example2.context.makeTransactionParam();
 tp.setAction(TransactionParam.ACTION_ENTITY_ADD);
 tp.setEntity(readOrder());
 tp.setKeyID(MetaMarket.FT_C_ORDERKey);

 return tp;
 }

 FT_C_ORDER readOrder() {
 BufferedReader in = null;

 try {
 FT_C_ORDER order = new FT_C_ORDER();
 in = new BufferedReader(new FileReader(new File(Example2.dirPath, filename)));
 order.FTSecID = in.readLine();
 order.OrderID = in.readLine();
 order.OperatorID = in.readLine(); // overwritten below !
 order.MrkOperatorID = in.readLine();
 order.Verb = Integer.parseInt(in.readLine());
 order.OrderType = Integer.parseInt(in.readLine());
 order.QtyParameter = Integer.parseInt(in.readLine());
 order.TimeInForce = Integer.parseInt(in.readLine());
 order.ValidityDate = Integer.parseInt(in.readLine());
 order.Status = Integer.parseInt(in.readLine());
 order.Price = Double.parseDouble(in.readLine());
 order.Qty = Double.parseDouble(in.readLine());
 order.StopPrice = Double.parseDouble(in.readLine());
 order.TriggerMechanism = Integer.parseInt(in.readLine());
 order.OperatorID = Example2.myOperatorID; // overwritten with the right value !
 trace("file read");

 return order;
 } catch(Exception e) {
 trace(e);

 return null;
 } finally {

 try {in.close();} catch(Exception e) {}
 }
 }
}

class TransactionPending extends TransactionExample { // specific past pending transact.
TransactionPending(Connection connection, String f) {

 super(connection, f);
 query();
 }

 TransactionParam makeTransactionParam() {
 TransactionParam tp = Example2.context.makeTransactionParam();
 tp.setPendingTransactionID(tidRead());

 return tp;
 }
}

Example 2

Example 2 233

// Common superclass for all classes of this example.

abstract class UtilityExample implements Tracer {
static final SimpleDateFormat sdf = new SimpleDateFormat("yyyy−MM−dd HH:mm:ss.SSS");

final String specificName;

UtilityExample() {
 specificName = "";
 }

UtilityExample(String name) {
 specificName = "<" + name + ">";
 }

void internalTrace(String line) {
 String m = getClass().getName() + specificName;
 Throwable t = new Throwable();
 StackTraceElement[] ste = t.getStackTrace();

 if(ste != null && ste.length >= 3) {
 m += "." + ste[2].getMethodName();

 if(Example2.verbose) {
 String fn = ste[2].getFileName();

int ln = ste[2].getLineNumber();
 m += "(" + (fn == null ? "" : fn) + (ln < 0 ? "" : ":" + ln) + ")";
 }
 }
 JFT.THIS.trace(m, JFT.TRACE_LEVEL_FATAL, line);

// In this simple example the level is always TRACE_LEVEL_FATAL
// so we will see our application trace
// whichever "−t ..." command−line option was choosen.

 }

void trace(String message) { internalTrace(message); }

void trace(int res) { internalTrace("Result=" + res); }

void trace(Exception e) { internalTrace("Exception: " + e); }

 public void onTrace(Date t, String m, int l, String ms) {
 String v = Example2.verbose ?
 sdf.format(t) + " " + l + " [" + Thread.currentThread().getName() + "] " : "";
 System.out.println(v + "[" + m + "] " + ms);
 }

void sleep(int intervalSecs) {
 try {

 Thread.sleep(intervalSecs * 1000L);
 } catch(InterruptedException ie) {
 trace(ie);
 }
 }
}

Example 2

234 Example 2

// Specific ThreadGroup to handle in an uniform way all generated exceptions.

class ThreadGroupExample extends ThreadGroup {

ThreadGroupExample() {
 super("Example");

 }

 public void uncaughtException(Thread t, Throwable e) {
 if(e instanceof ThreadDeath)

 super.uncaughtException(t, e); // call the overridden method
 else {

 System.out.println("Uncaught Exception in thread " + t.getName());
 e.printStackTrace(System.out);
 System.exit(0);
 }
 }
}

Example 3

The third example extend the second one adding a query facility.
To use this example you have to compile both second and third examples.

/*

Description
===========
This simple application example open a connection with a MetaMarket service
using YAS service manager, and then it subscribe orders
of some securities using EntityFilter.

*/

// Effective source−code Example3 starts here.

import java.io.*;

import it.list.jft.*; // to use the JFT/Api library

import it.list.jft.event.*; // to use the JFT/Api library

import metamarket.*; // to use MetaMarket, FT_C_ORDER, FT_C_TRADING_STATE, etc...

public class Example3 implements ConnectionListener, SubscriptionListener, FilterListener

{

Context context;
Connection connection;
EntityFilter filter;

public Example3()

{

Example 3

Example 3 235

JFT.THIS.init(JFT.MODE_MULTI_THREAD);

System.out.println("Starting...");

JFT.THIS.setTrace(true);
JFT.THIS.setTraceLevel(JFT.TRACE_LEVEL_DEBUG);

// uncomment this line for debug trace on system out

// JFT.THIS.setTraceMode(true, new PrintWriter(System.out));

// use this if you want to print trace on a file

// JFT.THIS.setTraceMode(true, new File("C:\\TRACE_Test.txt"));

// register MetaMarket order class

JFT.THIS.register(new FT_C_ORDER());
JFT.THIS.start();

context = JFT.THIS.makeContext();
ConnectionParam p = context.makeConnectionParam();

// change following parameters to fit your configuration

p.setHost("194.91.195.36");

p.setPort(37000);

p.setUserName("marco");

p.setPassword("*");

p.setClientID(12345);
p.setUserType(ConnectionParam.USER_TYPE_TRADER);

p.setService("METAMARKET");

connection = context.makeConnection(p, this);

System.out.println("Open connection result: " + connection.open());

}

public static void main(String[] args)
{

Example3 test = new Example3();

}

// connection listener interface

public void onConnectionOpen(ConnectionOpenEvent event)
{
System.out.println(event);

Example 3

236 Example 3

// crete EntityFilter
FilterParam filterparam = context.makeFilterParam();

filterparam.setEntityClassID(MetaMarket.FT_C_ORDER_ID);
filterparam.setType(EntityFilter.TYPE_ENTITYFILTER);

filter = (EntityFilter)context.makeFilter(connection, filterparam, this);

System.out.println("Filter Create Result: " + filter.create());

}

public void onConnectionClose(ConnectionCloseEvent event)
{
System.out.println(event);
}

public void onConnectionLost(ConnectionLostEvent event)
{
System.out.println(event);
}

// filter listener interface
public void onFilterCreate(FilterCreateEvent event)
{
System.out.println(event);

if (event.getResult() == FilterCreateEvent.RESULT_OK)
{
FT_C_ORDER order = new FT_C_ORDER();

SubscriptionParam param = context.makeSubscriptionParam();
param.setEntityClassID(MetaMarket.FT_C_ORDER_ID);
param.setFilter(filter);
param.setEntityKey(order.getFullEntityKey(MetaMarket.FT_C_ORDERKey));

Subscription sub = context.makeSubscription(connection, param, this);

System.out.println("Subscribing Result FT_C_ORDER: " + sub.start());

}
}

public void onFilterSet(FilterSetEvent event)
{
System.out.println(event);
}

public void onFilterDestroy(FilterDestroyEvent event)
{
System.out.println(event);
}

// subscription listener interface

public void onSubscriptionStart(SubscriptionStartEvent event)
{

System.out.println(event);

Example 3

Example 3 237

if (event.getResult()==SubscriptionStartEvent.RESULT_OK)
{

FT_C_ORDER order = new FT_C_ORDER();

order.FTSecID = "BITMTAACE";
filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));
order.FTSecID = "BITMTAF";
filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));
order.FTSecID = "BITMTACSP";
filter.add(order.getPartialEntityKey(MetaMarket.FT_C_ORDERKey,1));
filter.flush();

// now you will receive the order of this three
security only

}

}

public void onSubscriptionStop(SubscriptionStopEvent event)
{

System.out.println(event);

}

public void onSubscriptionIdle(SubscriptionIdleEvent event)
{

System.out.println(event);

}

public void onSubscriptionNotify(SubscriptionNotifyEvent event)
{

System.out.println(event);

}

}

Example 3

238 Example 3

To Contact Us
Any comments or requests for clarifications are welcome.

Email

Marketing: marketing@list−group.com

General Support: helpdesk@list−group.com

FT/API Programming Support: ftapi@list−group.com

Website

www.list−group.com

Offices

List SpA

Via Pietrasantina, 123 56122 Pisa − Italy

Tel. +39 050 80 01 51 � Fax +39 050 80 01 701

Foro Buonaparte, 76 20121 Milano − Italy

Tel. +39 02 80 28 91 � Fax +39 02 80 51 040

Via Cavour, 24 10123 Torino − Italy

Tel. +39 011 81 01 211 � Fax +39 011 83 58 83

Via Camporegio, 5 53100 Siena − Italy

Tel. +39 0577 05741 � Fax +39 0577 057499

Via Carducci, 20 34125 Trieste − Italy

Tel. +39 040 985 100 � Fax +39 040 985 1099

 To Contact Us 239

mailto:marketing@list-group.com
mailto:helpdesk@list-group.com
mailto:ftapi@list-group.com
http://www.list-group.com

Piazza Duomo, 57 27058 Voghera (PV) − Italy

Tel + 39 0383 64 35 11 − Fax + 39 0383 64 35 10

List UK Ltd

4th floor, 45 Ludgate Hill − London EC4M 7JU − UK

Tel. +44 (0)203 393 43 70 − Fax +44 (0)203 393 43 72

List USA Inc

5 Penn Plaza, Suite 3600 − New York, NY, 10119 USA

Tel. +1 212 83 51 622 − Fax +1 212 84 96 901

List Polska SA

Plac Trzech Krzyzy, 3 − 00−535 Warszawa

Tel +48 22 584 70 11− Fax +48 22 584 70 14

List Technology Iberica SA

C/Zurbano, 5 − 1° − 28010 Madrid

Tel +34 917 88 82 00 − Fax +34 917 88 82 32

List Sdn Bhd

35−2 Jalan Putra Mahkota 7/7B, Putra Point Business Centre − Putra Heights − 47650
Subang Jaya − Selangor Darul Ehsan Malaysia

Tel +603 51911522 Fax +603 51922312

List India Private Ltd Ltd

3S−11, 2nd Floor, Haware’s Centurion, Plot No.88−91, Sector19A 400706 − NERUL NAVI
MUMBAI − Maharashtra India *** Tel +91 22 27703445 Fax +91 22 27703445

 To Contact Us

240 To Contact Us

 To Contact Us

 To Contact Us 241

 To Contact Us

242 To Contact Us

	Table of Contents
	JFT\Api
	 JFT/Api Introduction
	FastTrack Overview
	System Architecture Overview
	Access points
	JFT/Api Access Point

	Data Distribution
	Publish
	Subscribe
	Queries
	Transactions
	Connections and Contexts

	JFT/Api Details
	Asynchronous Communication Model
	LifeCycle
	Data Model
	Other Peculiarities
	JFT/Api Entry Point

	Package it.list.jft
	Package it.list.jft Description
	 Package it.list.jft Data Model

	Hierarchy For Package it.list.jft
	Interface Hierarchy
	Interface EntityClass
	Interface Entity
	Interface EntityField
	Interface EntityKey
	Interface LifeCycle
	Interface CommunicationLifeCycle
	Interface ActivityLifeCycle
	Interface EntityClassQuery
	Interface Filter
	Interface EntityFilter
	Interface Query
	Interface Subscription
	Interface Transaction
	Interface Connection
	Interface MulticastConnection
	Interface Context
	Interface JFT
	Interface Mask
	Interface Param
	Interface ConnectionParam
	Interface EntityClassQueryParam
	Interface FilterParam
	Interface MulticastConnectionParam
	Interface QueryParam
	Interface SubscriptionParam
	Interface TransactionParam
	Interface TimeStamp
	Interface TransactionID
	Interface Tracer

	Package it.list.jft.event
	Package it.list.jft.event Description
	 Package it.list.jft.event Data Model

	Hierarchy For Package it.list.jft.event
	Interface Hierarchy
	Interface Event
	Interface ConnectionEvent
	Interface ConnectionCloseEvent
	Interface ConnectionLostEvent
	Interface ConnectionOpenEvent
	Interface EntityClassQueryEvent
	Interface FilterEvent
	Interface FilterCreateEvent
	Interface FilterDestroyEvent
	Interface FilterSetEvent
	Interface MulticastConnectionEvent
	Interface QueryEvent
	Interface QueryCreateEvent
	Interface QueryDestroyEvent
	Interface QueryNotifyEvent
	Interface QueryRowsEvent
	Interface SubscriptionEvent
	Interface SubscriptionIdleEvent
	Interface SubscriptionNotifyEvent
	Interface SubscriptionStartEvent
	Interface SubscriptionStopEvent
	Interface TransactionEvent
	Interface TransactionQueryEvent
	Interface TransactionSendEvent
	Interface Listener
	Interface ConnectionListener
	Interface EntityClassQueryListener
	Interface FilterListener
	Interface MulticastConnectionListener
	Interface QueryListener
	Interface SubscriptionListener
	Interface TransactionListener

	 JFT/Api Application Examples
	Example 1
	Example 2
	Example 3

	 To Contact Us

